Page 22 - MSAM-4-2
P. 22

Materials Science in Additive Manufacturing                           Hydrogels in mandibular reconstruction



               defect repair. Int J Polym Mater. 2022;72(9):725-737.  19.  Aghajanzadeh MS, Imani R, Nazarpak MH, McInnes SJP.
                                                                  Augmented   physical,  mechanical,  and  cellular
               doi: 10.1080/00914037.2022.2052729
                                                                  responsiveness of gelatin-aldehyde modified xanthan
            9.   Spiller  KL, Maher  SA,  Lowman  AM. Hydrogels  for  the   hydrogel through incorporation of silicon nanoparticles for
               repair of articular cartilage defects. Tissue Eng Part B Rev.   bone tissue engineering. Int J Biol Macromol. 2024;259(Pt
               2011;17(4):281-299.                                2):129231.
               doi: 10.1089/ten.TEB.2011.0077                     doi: 10.1016/j.ijbiomac.2024.129231
            10.  Bashir S, Hina M, Iqbal J, et al. Fundamental concepts of   20.  Rauner N, Meuris M, Zoric M, Tiller JC. Enzymatic
               hydrogels: Synthesis, properties, and their applications.   mineralization generates ultrastiff and tough hydrogels with
               Polymers (Basel). 2020;12(11):2702.                tunable mechanics. Nature. 2017;543(7645):407-410.
               doi: 10.3390/polym12112702                         doi: 10.1038/nature21392
            11.  Cheng C, Sun Q, Wang X, He B, Jiang T. Enzyme-  21.  Yu T, Zhang L, Dou X, et al. Mechanically robust hydrogels
               manipulated hydrogelation of small molecules for   facilitating  bone  regeneration  through  epigenetic
               biomedical applications. Acta Biomater. 2022;151:88-105.  modulation. Adv Sci (Weinh). 2022;9(32):e2203734.
               doi: 10.1016/j.actbio.2022.08.016                  doi: 10.1002/advs.202203734
            12.  Li  Y,  Wang  X,  Han  Y, Sun HY,  Hilborn  J,  Shi  L.  Click   22.  Wu  P, Shen  L,  Liu HF,  et al.  The marriage of
               chemistry-based  biopolymeric  hydrogels for regenerative   immunomodulatory, angiogenic, and osteogenic capabilities
               medicine. Biomed Mater. 2021;16(2):022003.         in a piezoelectric hydrogel tissue engineering scaffold for
               doi: 10.1088/1748-605X/abc0b3                      military medicine. Mil Med Res. 2023;10(1):35.
            13.  Zhang Y, Wang S, Tian Y, et al. Multi-physically cross-linked      doi: 10.1186/s40779-023-00469-5
               hydrogels for flexible sensors with high strength and self-  23.  Li W, Wang C, Wang Z, et al. Physically cross-linked DNA
               healing properties. Polymers (Basel). 2023;15(18):3748.  hydrogel-based sustained cytokine delivery for  in situ
               doi: 10.3390/polym15183748                         diabetic alveolar bone rebuilding. ACS Appl Mater Interfaces.
                                                                  2022;14(22):25173-25182.
            14.  Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in
               crosslinking strategies of biomedical hydrogels.  Biomater      doi: 10.1021/acsami.2c04769
               Sci. 2019;7(3):843-855.                         24.  Takallu S, Mirzaei E, Azadi A, Karimizade A, Tavakol S. Plate-
               doi: 10.1039/c8bm01246f                            shape carbonated hydroxyapatite/collagen nanocomposite
                                                                  hydrogel via  in situ mineralization of hydroxyapatite
            15.  Salma-Ancane K, Sceglovs A, Tracuma E,  et al.  Effect   concurrent with gelation of collagen at pH = 7.4 and 37°C.
               of crosslinking strategy on the biological, antibacterial   J Biomed Mater Res B Appl Biomater. 2019;107(6):1920-1929.
               and  physicochemical  performance  of  hyaluronic  acid
               and  e-polylysine based hydrogels.  Int J Biol Macromol.      doi: 10.1002/jbm.b.34284
               2022;208:995-1008.                              25.  Gwak GH, Choi AJ, Bae YS, Choi HJ, Oh JM.
               doi: 10.1016/j.ijbiomac.2022.03.207                Electrophoretically  prepared  hybrid  materials  for
                                                                  biopolymer  hydrogel  and  layered  ceramic  nanoparticles.
            16.  Niewiadomski K, Szopa D, Pstrowska K, Wróbel P, Witek-  Biomater Res. 2016;20:1.
               Krowiak A. Comparative analysis of crosslinking methods
               and their impact on the physicochemical properties of SA/     doi: 10.1186/s40824-016-0048-4
               PVA hydrogels. Materials (Basel). 2024;17(8):1816.  26.  Shin  SR, Jung  SM, Zalabany  M,  et al.  Carbon-nanotube-
               doi: 10.3390/ma17081816                            embedded hydrogel sheets for engineering cardiac constructs
                                                                  and bioactuators. ACS Nano. 2013;7(3):2369-2380.
            17.  Chuang CH, Lin RZ, Melero-Martin JM, Chen YC.
               Comparison of covalently and physically cross-linked      doi: 10.1021/nn305559j
               collagen hydrogels on mediating vascular network   27.  Kayalvizhy E, Pazhanisamy P. Swelling behavior of
               formation for engineering adipose tissue.  Artif Cells   poly(N-cyclohexylacrylamide-co-acrylamide/AMPSNa)
               Nanomed Biotechnol. 2018;46(sup3):S434-S447.       gold nanocomposite hydrogels.  Int J Biol Macromol.
               doi: 10.1080/21691401.2018.1499660                 2016;86:721-727.
            18.  El-Husseiny HM, Mady EA, El-Dakroury WA, Doghish AS,      doi: 10.1016/j.ijbiomac.2016.01.047
               Tanaka R. Stimuli-responsive hydrogels: Smart state of-the-  28.  Kumar A, Jaiswal M. Design and in vitro investigation of
               art platforms for cardiac tissue engineering.  Front Bioeng   nanocomposite hydrogel based in situ spray dressing for
               Biotechnol. 2023;11:1174075.
                                                                  chronic wounds and synthesis of silver nanoparticles using
               doi: 10.3389/fbioe.2023.1174075                    green chemistry. J Appl Polym Sci. 2015;133(14):43260.


            Volume 4 Issue 2 (2025)                         16                        doi: 10.36922/MSAM025070006
   17   18   19   20   21   22   23   24   25   26   27