Page 93 - MSAM-4-2
P. 93

Materials Science in Additive Manufacturing                               Quality of a 3D-printed steel part



            49.  Pannitz O, Sehrt JT. Transferability of process parameters in      doi: 10.1108/RPJ-06-2015-0078
               laser powder bed fusion processes for an energy and cost   55.  Leary M. Surface roughness optimisation for selective laser
               efficient manufacturing. Sustainability. 2020;12:1565.
                                                                  melting (SLM): Accommodating relevant and irrelevant
               doi: 10.3390/su12041565                            surfaces. In: Brandt M editor. Laser Additive Manufacturing:
            50.  Yun H, Dong L, Wang W, Bing Z, Xiangyun L. Study on the   Materials, Design, Technologies, and Applications. Woodhead
               flowability of TC4 alloy powder for 3D printing. IOP Conf   Publishing Series in Electronic and Optical Materials. Ch. 4.
               Ser Mater Sci Eng. 2018;439:042006.                United Kingdom: Woodhead Publishing; 2017. p. 99-118.
               doi: 10.1088/1757-899x/439/4/042006                doi: 10.1016/B978-0-08-100433-3.00004-X
            51.  Pagác M, Hajnys J, Petru J, Zlámal T. Comparison of hardness   56.  Vayssette  B, Saintier  N, Brugger  C, Elmay M,  Pessard E.
               of surface 316L stainless steel made by additive technology   Surface roughness of Ti-6Al-4V parts obtained by SLM
               and cold rolling. Mater Sci Forum. 2018;919:84-91.  and EBM: Effect on the high cycle fatigue life. Procedia Eng.
                                                                  2018;213:89-97.
               doi: 10.4028/www.scientific.net/msf.919.84
                                                                  doi: 10.1016/j.proeng.2018.02.010
            52.  Liverani E, Toschi S, Ceschini L, Fortunato A. Effect
               of  selective  laser  melting  (SLM)  process  parameters  on   57.  Iron-Foundry.  Rockwell Hardness  (HRC, HRB) to Brinell
               microstructure and mechanical properties of 316L austenitic   Hardness  (HB or BHN) Conversion; 2024. Available from:
               stainless steel. J Mater Process Technol. 2017;249:255-263.  https://www.iron-foundry.com/hardness-hrc-hrb-hb.html
                                                                  [Last accessed on 2024 Aug 05].
               doi: 10.1016/j.jmatprotec.2017.05.042
                                                               58.  ASTM. Standard Test Methods and Definitions for Mechanical
            53.  Strano G, Hao L, Everson RM, Evans KE. Surface roughness   Testing of Steel Products (ASTM A370-24). United States:
               analysis, modelling and prediction in selective laser melting.   ASTM International; 2024.
               J Mater Process Technol. 2013;213:589-597.
                                                                  doi: 10.1520/A0370-24
               doi: 10.1016/j.jmatprotec.2012.11.011
                                                               59.  Pavlina E, Tyne CV. Correlation of yield strength and tensile
            54.  Wang D, Liu Y, Yang Y, Xiao D. Theoretical and experimental
               study on surface roughness of 316L stainless steel metal parts   strength with hardness for steels.  J  Mater Eng Perform.
               obtained through selective laser melting. Rapid Prototyp J.   2008;17:888-893.
               2016;22:706-716.                                   doi: 10.1007/s11665-008-9225-5








































            Volume 4 Issue 2 (2025)                         15                        doi: 10.36922/MSAM025040002
   88   89   90   91   92   93   94   95   96   97   98