Page 91 - MSAM-4-2
P. 91

Materials Science in Additive Manufacturing                               Quality of a 3D-printed steel part



               constraints. CIRP Ann. 2016;65:737-760.            doi: 10.1016/j.jmrt.2019.11.054
               doi: 10.1016/j.cirp.2016.05.004                 16.  Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C,
                                                                  Hague R. 3D printing of aluminium alloys: Additive
            2.   Attaran M. The rise of 3-D printing: The advantages of   manufacturing of aluminium alloys using selective laser
               additive manufacturing over traditional manufacturing. Bus   melting. Prog Mater Sci. 2019;106:100578.
               Horiz. 2017;60:677-688.
                                                                  doi: 10.1016/j.pmatsci.2019.100578
               doi: 10.1016/j.bushor.2017.05.011
                                                               17.  Sutton AT, Kriewall CS, Leu MC, Newkirk JW. Powder
            3.   Grasso  M,  Colosimo  BM.  Process  defects  and  in situ   characterisation techniques and effects of powder
               monitoring methods in metal powder bed fusion: A review.   characteristics on part properties in powder-bed fusion
               Meas Sci Technol. 2017;28:044005.
                                                                  processes. Virtual Phys Prototyp. 2017;12:3-29.
               doi: 10.1088/1361-6501/aa5c4f
                                                                  doi: 10.1080/17452759.2016.1250605
            4.   Lewandowski JJ, Seifi M. Metal additive manufacturing:   18.  Tian Y, Gora WS, Cabo AP, et al. Material interactions in
               A  review of mechanical properties.  Ann Rev Mater Res.   laser polishing powder bed additive manufactured Ti6Al4V
               2016;46:151-186.                                   components. Addit Manuf. 2018;20:11-22.
               doi: 10.1146/annurev-matsci-070115-0320245         doi: 10.1016/j.addma.2017.12.010
            5.  ASTM.  Additive  Manufacturing-General  Principles-  19.  Zhang B, Li Y, Bai Q. Defect formation mechanisms
               Fundamentals and Vocabulary (ISO/ASTM 52900:2021).   in selective laser melting: A  review.  Chin J Mech Eng.
               United States: ASTM International; 2021.           2017;30:515-527.
               doi: 10.1520/F3177-21                              doi: 10.1007/s10033-017-0121-5
            6.   SLM Solutions Group AG. Available from: https://www.slm-  20.  Malekipour E, El-Mounayri H. Common defects and
               solutions.com [Last accessed on 2021 Sep 16].      contributing parameters in powder bed fusion AM process
            7.   EOS GmbH-Electro Optical Systems. Available from:   and their classification for online monitoring and control:
               https://www.eos.info [Last accessed on 2021 Sep 16].  A review. Int J Adv Manuf Technol. 2018;95:527-550.
            8.   Concept Laser GmbH/GE Additive. Available from: https://     doi: 10.1007/s00170-017-1172-6
               www.ge.com/additive/who-we-are/concept-laser [Last accessed   21.  Murr LE, Martinez E, Hernandez J, et al. Microstructures
               on 2021 Sep 16].                                   and properties of 17-4 PH stainless steel fabricated by
            9.   Trumpf GmbH & Co. KG. Available from: https://www.  selective laser melting. J Mater Res Technol. 2012;1:167-177.
               trumpf.com [Last accessed on 2021 Sep 16].         doi: 10.1016/s2238-7854(12)70029-7
            10.  DM3D Technology, LLC. Available from: https://dm3dtech.  22.  Facchini L, Vicente N Jr., Lonardelli I, Magalini E, Robotti P,
               com [Last accessed on 2021 Sep 16].                Molinari A. Metastable austenite in 17-4 precipitation-
            11.  Optomec Inc. Available from: https://optomec.com [Last   hardening stainless steel produced by selective laser melting.
               accessed on 2021 Sep 16].                          Adv Eng Mater. 2010;12:184-188.
            12.  Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive      doi: 10.1002/adem.200900259
               manufacturing of metals. Acta Mater. 2016;117:371-392.  23.  LeBrun T, Nakamoto T, Horikawa K, Kobayashi H. Effect
               doi: 10.1016/j.actamat.2016.07.019                 of retained austenite on subsequent thermal processing and
                                                                  resultant mechanical properties of selective laser melted
            13.  Chua C, Liu Y, Williams RJ, Chua CK, Sing SL. In-process and   17-4 PH stainless steel. Mater Des. 2015;81:44-53.
               post-process strategies for part quality assessment in metal
               powder bed fusion: A review. J Manuf Syst. 2024;73:75-105.     doi: 10.1016/j.matdes.2015.05.026
               doi: 10.1016/j.jmsy.2024.01.004                 24.  Kempen K, Yasa E, Thijs L, Kruth JP, Humbeeck JV.
                                                                  Microstructure and mechanical properties of selective laser
            14.  Thiede T, Mishurova T, Evsevleev S, Serrano-Munoz I,   melted 18Ni-300 steel. Phys Procedia. 2011;12:255-263.
               Gollwitzer C, Bruno G. 3D shape analysis of powder for
               laser beam melting by synchrotron X-ray CT.  Quantum      doi: 10.1016/j.phpro.2011.03.033
               Beam Sci. 2019;3:3.                             25.  Jägle EA, Choi PP, van Humbeeck J, Raabe D. Precipitation
               doi: 10.3390/qubs3010003                           and austenite reversion behavior of a maraging steel produced
                                                                  by selective laser melting. J Mater Res. 2014;29:2072-2079.
            15.  Zapico P, Giganto S, Barreiro J, Martínez-Pellitero S.
               Characterisation of 17-4PH metallic powder recycling to      doi: 10.1557/jmr.2014.204
               optimise the performance of the selective laser melting   26.  Krakhmalev P, Yadroitsava I, Fredriksson G, Yadroitsev I. In
               process. J Mater Res Technol. 2020;9:1273-1285.    situ heat treatment in selective laser melted martensitic AISI


            Volume 4 Issue 2 (2025)                         13                        doi: 10.36922/MSAM025040002
   86   87   88   89   90   91   92   93   94   95   96