Page 91 - MSAM-4-2
P. 91
Materials Science in Additive Manufacturing Quality of a 3D-printed steel part
constraints. CIRP Ann. 2016;65:737-760. doi: 10.1016/j.jmrt.2019.11.054
doi: 10.1016/j.cirp.2016.05.004 16. Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C,
Hague R. 3D printing of aluminium alloys: Additive
2. Attaran M. The rise of 3-D printing: The advantages of manufacturing of aluminium alloys using selective laser
additive manufacturing over traditional manufacturing. Bus melting. Prog Mater Sci. 2019;106:100578.
Horiz. 2017;60:677-688.
doi: 10.1016/j.pmatsci.2019.100578
doi: 10.1016/j.bushor.2017.05.011
17. Sutton AT, Kriewall CS, Leu MC, Newkirk JW. Powder
3. Grasso M, Colosimo BM. Process defects and in situ characterisation techniques and effects of powder
monitoring methods in metal powder bed fusion: A review. characteristics on part properties in powder-bed fusion
Meas Sci Technol. 2017;28:044005.
processes. Virtual Phys Prototyp. 2017;12:3-29.
doi: 10.1088/1361-6501/aa5c4f
doi: 10.1080/17452759.2016.1250605
4. Lewandowski JJ, Seifi M. Metal additive manufacturing: 18. Tian Y, Gora WS, Cabo AP, et al. Material interactions in
A review of mechanical properties. Ann Rev Mater Res. laser polishing powder bed additive manufactured Ti6Al4V
2016;46:151-186. components. Addit Manuf. 2018;20:11-22.
doi: 10.1146/annurev-matsci-070115-0320245 doi: 10.1016/j.addma.2017.12.010
5. ASTM. Additive Manufacturing-General Principles- 19. Zhang B, Li Y, Bai Q. Defect formation mechanisms
Fundamentals and Vocabulary (ISO/ASTM 52900:2021). in selective laser melting: A review. Chin J Mech Eng.
United States: ASTM International; 2021. 2017;30:515-527.
doi: 10.1520/F3177-21 doi: 10.1007/s10033-017-0121-5
6. SLM Solutions Group AG. Available from: https://www.slm- 20. Malekipour E, El-Mounayri H. Common defects and
solutions.com [Last accessed on 2021 Sep 16]. contributing parameters in powder bed fusion AM process
7. EOS GmbH-Electro Optical Systems. Available from: and their classification for online monitoring and control:
https://www.eos.info [Last accessed on 2021 Sep 16]. A review. Int J Adv Manuf Technol. 2018;95:527-550.
8. Concept Laser GmbH/GE Additive. Available from: https:// doi: 10.1007/s00170-017-1172-6
www.ge.com/additive/who-we-are/concept-laser [Last accessed 21. Murr LE, Martinez E, Hernandez J, et al. Microstructures
on 2021 Sep 16]. and properties of 17-4 PH stainless steel fabricated by
9. Trumpf GmbH & Co. KG. Available from: https://www. selective laser melting. J Mater Res Technol. 2012;1:167-177.
trumpf.com [Last accessed on 2021 Sep 16]. doi: 10.1016/s2238-7854(12)70029-7
10. DM3D Technology, LLC. Available from: https://dm3dtech. 22. Facchini L, Vicente N Jr., Lonardelli I, Magalini E, Robotti P,
com [Last accessed on 2021 Sep 16]. Molinari A. Metastable austenite in 17-4 precipitation-
11. Optomec Inc. Available from: https://optomec.com [Last hardening stainless steel produced by selective laser melting.
accessed on 2021 Sep 16]. Adv Eng Mater. 2010;12:184-188.
12. Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive doi: 10.1002/adem.200900259
manufacturing of metals. Acta Mater. 2016;117:371-392. 23. LeBrun T, Nakamoto T, Horikawa K, Kobayashi H. Effect
doi: 10.1016/j.actamat.2016.07.019 of retained austenite on subsequent thermal processing and
resultant mechanical properties of selective laser melted
13. Chua C, Liu Y, Williams RJ, Chua CK, Sing SL. In-process and 17-4 PH stainless steel. Mater Des. 2015;81:44-53.
post-process strategies for part quality assessment in metal
powder bed fusion: A review. J Manuf Syst. 2024;73:75-105. doi: 10.1016/j.matdes.2015.05.026
doi: 10.1016/j.jmsy.2024.01.004 24. Kempen K, Yasa E, Thijs L, Kruth JP, Humbeeck JV.
Microstructure and mechanical properties of selective laser
14. Thiede T, Mishurova T, Evsevleev S, Serrano-Munoz I, melted 18Ni-300 steel. Phys Procedia. 2011;12:255-263.
Gollwitzer C, Bruno G. 3D shape analysis of powder for
laser beam melting by synchrotron X-ray CT. Quantum doi: 10.1016/j.phpro.2011.03.033
Beam Sci. 2019;3:3. 25. Jägle EA, Choi PP, van Humbeeck J, Raabe D. Precipitation
doi: 10.3390/qubs3010003 and austenite reversion behavior of a maraging steel produced
by selective laser melting. J Mater Res. 2014;29:2072-2079.
15. Zapico P, Giganto S, Barreiro J, Martínez-Pellitero S.
Characterisation of 17-4PH metallic powder recycling to doi: 10.1557/jmr.2014.204
optimise the performance of the selective laser melting 26. Krakhmalev P, Yadroitsava I, Fredriksson G, Yadroitsev I. In
process. J Mater Res Technol. 2020;9:1273-1285. situ heat treatment in selective laser melted martensitic AISI
Volume 4 Issue 2 (2025) 13 doi: 10.36922/MSAM025040002

