Page 41 - MSAM-4-3
P. 41

Materials Science in Additive Manufacturing                 Numerical simulation of plasma WAAM for Ti-6Al-4V



            7.   Masubuchi K. Residual stresses and distortion in welds.   18.  Gu Y, Li YD, Yong Y, Xu FL, Su LF. Determination of
               In:  Encyclopedia of Materials: Science and Technology.   parameters of  double-ellipsoidal heat source  model  based
               Netherlands: Elsevier; 2005. p. 1-6.               on optimization method. Weld World. 2019;63(2):365-376.
               doi: 10.1016/B0-08-043152-6/01457-1                doi: 10.1007/s40194-018-00678-w
            8.   Ding J, Colegrove P, Mehnen J,  et al. Thermo-mechanical   19.  Goldak J, Chakravarti A, Bibby M. A  new finite element
               analysis of wire and arc additive layer manufacturing process on   model for welding heat sources.  Metall Trans B.
               large multi-layer parts. Comput Mater Sci. 2011;50:3315-3322.  1984;15(2):299-305.
               doi: 10.1016/j.commatsci.2011.06.023               doi: 10.1007/BF02667333
            9.   Colegrove PA, Coules HE, Fairman J, et al. Microstructure   20.  Simufact. Infosheet Heat Source. Simufact Welding Tutorial.
               and residual stress improvement in wire and arc additively   Hamburg, Germany: Simufact Engineering GmbH; 2018.
               manufactured parts through high-pressure rolling. J Mater   21.  Lundbäck A. Modelling of Weld Path for Use in Simulations.
               Process Technol. 2013;213(10):1782-1791.
                                                                  Master’s Thesis. Sweden: Lulea University of Technology;
               doi: 10.1016/j.jmatprotec.2013.04.012              2000.
            10.  Hoye N, Li HJ, Cuiuri D, Paradowska AM. Measurement of   22.  Fachinotti VD, Anca AA, Cardona A. Analytical solutions of
               residual stresses in titanium aerospace components formed via   the thermal field induced by moving double-ellipsoidal and
               additive manufacturing. Mater Sci Forum. 2014;777:124-129.  double-elliptical heat sources in a semi-infinite body. Int J
                                                                  Numer Methods Biomed Eng. 2011;27(4):595-607.
               doi: 10.4028/www.scientific.net/MSF.777.124
                                                                  doi: 10.1002/cnm.1324
            11.  Martina F, Roy MJ, Szost BA, et al. Residual stress of as-deposited
               and rolled wire+arc additive manufacturing Ti-6Al-4V   23.  Megahed M, Mindt HW, N’Dri N, Duan H, Desmaison O.
               components. Mater Sci Technol. 2016;32(14):1439-1448.  Metal additive-manufacturing process and residual stress
                                                                  modeling. Integr Mater Manuf Innov. 2016;5(1):61-93.
               doi: 10.1080/02670836.2016.1142704
                                                                  doi: 10.1186/s40192-016-0047-2
            12.  Coules HE. Contemporary approaches to reducing weld
               induced residual stress. Mater Sci Technol. 2013;29(1):4-18.  24.  Radaj D. Wärmewirkungen Des Schweißens [Thermal Effects
                                                                  of Welding]. Berlin, Heidelberg: Springer; 1988.
               doi: 10.1179/1743284712Y.0000000106
                                                                  doi: 10.1007/978-3-642-52297-0
            13.  Hu X, Chiu LN, Huang A, Liu M, Yan W. Application of
               melt pool profiles for parameter calibration of Goldak’s heat   25.  Simufact.  Infosheet  Boundary  Conditions  Thermal.
               source model. Addit Manuf. 2024;92:104379.         Simufact Welding Tutorial. Hamburg, Germany: Simufact
                                                                  Engineering GmbH; 2018.
               doi: 10.1016/j.addma.2024.104379
                                                               26.  Helbig  P.  Kalibrierung Von Ersatzwärmequellen Für
            14.  Bayat M, Dong W, Thorborg J, To AC, Hattel JH. A review of   Die  numerische  Simulation von  Laserschweißprozessen
               multi-scale and multi-physics simulations of metal additive   [Calibration of Representative Heat Sources for the Numerical
               manufacturing processes with focus on modeling strategies.   Simulation of  Laser  Welding Processes].  Master’s  Thesis.
               Addit Manuf. 2021;47:102278.
                                                                  Kassel: Universität Kassel; 2018.
               doi: 10.1016/j.addma.2021.102278
                                                               27.  Xiong J, Lei Y, Li R. Finite element analysis and experimental
            15.  Deng D, Murakawa H. Numerical simulation of temperature   validation of thermal behavior for thin-walled parts
               field and residual stress in multi-pass welds in stainless steel   in GMAW-based additive manufacturing with various
               pipe and comparison with experimental measurements.   substrate  preheating temperatures.  Appl Therm Eng.
               Comput Mater Sci. 2006;37(3):269-277.              2017;126:43-52.
               doi: 10.1016/j.commatsci.2005.07.007               doi: 10.1016/j.applthermaleng.2017.07.168
            16.  Aarbogh HM, Hamide M, Fjær HG, Mo A, Bellet M.   28.  Wang J, Lin X, Wang J, et al. Grain morphology evolution
               Experimental validation of finite element codes for welding   and texture characterization of wire and arc additive
               deformations. J Mater Process Technol. 2010;210(13):1681-1689.  manufactured Ti-6Al-4V. J Alloys Compd. 2018;768:97-113.
               doi: 10.1016/j.jmatprotec.2010.05.014              doi: 10.1016/j.jallcom.2018.07.235
            17.  Karkhin VA, Pittner A, Schwenk C, Rethmeier M. Simulation   29.  Abe T, Kaneko J, Sasahara H. Thermal sensing and
               of inverse heat conduction problems in fusion welding with   heat input control for thin-walled structure building
               extended analytical heat source models.  Front Mater Sci.   based on numerical simulation for wire and arc additive
               2011;5(2):119-125.                                 manufacturing. Addit Manuf. 2020;35:101357.
               doi: 10.1007/s11706-011-0137-1                     doi: 10.1016/j.addma.2020.101357


            Volume 4 Issue 3 (2025)                         14                        doi: 10.36922/MSAM025140021
   36   37   38   39   40   41   42   43   44   45   46