Page 41 - MSAM-4-3
P. 41
Materials Science in Additive Manufacturing Numerical simulation of plasma WAAM for Ti-6Al-4V
7. Masubuchi K. Residual stresses and distortion in welds. 18. Gu Y, Li YD, Yong Y, Xu FL, Su LF. Determination of
In: Encyclopedia of Materials: Science and Technology. parameters of double-ellipsoidal heat source model based
Netherlands: Elsevier; 2005. p. 1-6. on optimization method. Weld World. 2019;63(2):365-376.
doi: 10.1016/B0-08-043152-6/01457-1 doi: 10.1007/s40194-018-00678-w
8. Ding J, Colegrove P, Mehnen J, et al. Thermo-mechanical 19. Goldak J, Chakravarti A, Bibby M. A new finite element
analysis of wire and arc additive layer manufacturing process on model for welding heat sources. Metall Trans B.
large multi-layer parts. Comput Mater Sci. 2011;50:3315-3322. 1984;15(2):299-305.
doi: 10.1016/j.commatsci.2011.06.023 doi: 10.1007/BF02667333
9. Colegrove PA, Coules HE, Fairman J, et al. Microstructure 20. Simufact. Infosheet Heat Source. Simufact Welding Tutorial.
and residual stress improvement in wire and arc additively Hamburg, Germany: Simufact Engineering GmbH; 2018.
manufactured parts through high-pressure rolling. J Mater 21. Lundbäck A. Modelling of Weld Path for Use in Simulations.
Process Technol. 2013;213(10):1782-1791.
Master’s Thesis. Sweden: Lulea University of Technology;
doi: 10.1016/j.jmatprotec.2013.04.012 2000.
10. Hoye N, Li HJ, Cuiuri D, Paradowska AM. Measurement of 22. Fachinotti VD, Anca AA, Cardona A. Analytical solutions of
residual stresses in titanium aerospace components formed via the thermal field induced by moving double-ellipsoidal and
additive manufacturing. Mater Sci Forum. 2014;777:124-129. double-elliptical heat sources in a semi-infinite body. Int J
Numer Methods Biomed Eng. 2011;27(4):595-607.
doi: 10.4028/www.scientific.net/MSF.777.124
doi: 10.1002/cnm.1324
11. Martina F, Roy MJ, Szost BA, et al. Residual stress of as-deposited
and rolled wire+arc additive manufacturing Ti-6Al-4V 23. Megahed M, Mindt HW, N’Dri N, Duan H, Desmaison O.
components. Mater Sci Technol. 2016;32(14):1439-1448. Metal additive-manufacturing process and residual stress
modeling. Integr Mater Manuf Innov. 2016;5(1):61-93.
doi: 10.1080/02670836.2016.1142704
doi: 10.1186/s40192-016-0047-2
12. Coules HE. Contemporary approaches to reducing weld
induced residual stress. Mater Sci Technol. 2013;29(1):4-18. 24. Radaj D. Wärmewirkungen Des Schweißens [Thermal Effects
of Welding]. Berlin, Heidelberg: Springer; 1988.
doi: 10.1179/1743284712Y.0000000106
doi: 10.1007/978-3-642-52297-0
13. Hu X, Chiu LN, Huang A, Liu M, Yan W. Application of
melt pool profiles for parameter calibration of Goldak’s heat 25. Simufact. Infosheet Boundary Conditions Thermal.
source model. Addit Manuf. 2024;92:104379. Simufact Welding Tutorial. Hamburg, Germany: Simufact
Engineering GmbH; 2018.
doi: 10.1016/j.addma.2024.104379
26. Helbig P. Kalibrierung Von Ersatzwärmequellen Für
14. Bayat M, Dong W, Thorborg J, To AC, Hattel JH. A review of Die numerische Simulation von Laserschweißprozessen
multi-scale and multi-physics simulations of metal additive [Calibration of Representative Heat Sources for the Numerical
manufacturing processes with focus on modeling strategies. Simulation of Laser Welding Processes]. Master’s Thesis.
Addit Manuf. 2021;47:102278.
Kassel: Universität Kassel; 2018.
doi: 10.1016/j.addma.2021.102278
27. Xiong J, Lei Y, Li R. Finite element analysis and experimental
15. Deng D, Murakawa H. Numerical simulation of temperature validation of thermal behavior for thin-walled parts
field and residual stress in multi-pass welds in stainless steel in GMAW-based additive manufacturing with various
pipe and comparison with experimental measurements. substrate preheating temperatures. Appl Therm Eng.
Comput Mater Sci. 2006;37(3):269-277. 2017;126:43-52.
doi: 10.1016/j.commatsci.2005.07.007 doi: 10.1016/j.applthermaleng.2017.07.168
16. Aarbogh HM, Hamide M, Fjær HG, Mo A, Bellet M. 28. Wang J, Lin X, Wang J, et al. Grain morphology evolution
Experimental validation of finite element codes for welding and texture characterization of wire and arc additive
deformations. J Mater Process Technol. 2010;210(13):1681-1689. manufactured Ti-6Al-4V. J Alloys Compd. 2018;768:97-113.
doi: 10.1016/j.jmatprotec.2010.05.014 doi: 10.1016/j.jallcom.2018.07.235
17. Karkhin VA, Pittner A, Schwenk C, Rethmeier M. Simulation 29. Abe T, Kaneko J, Sasahara H. Thermal sensing and
of inverse heat conduction problems in fusion welding with heat input control for thin-walled structure building
extended analytical heat source models. Front Mater Sci. based on numerical simulation for wire and arc additive
2011;5(2):119-125. manufacturing. Addit Manuf. 2020;35:101357.
doi: 10.1007/s11706-011-0137-1 doi: 10.1016/j.addma.2020.101357
Volume 4 Issue 3 (2025) 14 doi: 10.36922/MSAM025140021

