Page 42 - MSAM-4-3
P. 42
Materials Science in Additive Manufacturing Numerical simulation of plasma WAAM for Ti-6Al-4V
30. Sampaio RFV, Pragana JPM, Bragança IMF, Silva CMA, Phys Prototyp. 2024;19(1):e2349683.
Nielsen CV, Martins PAF. Modelling of wire-arc additive
manufacturing a review. Adv Ind Manuf Eng. 2023;6:100121. doi: 10.1080/17452759.2024.2349683
41. Strobl D, Unger JF, Ghnatios C, et al. Efficient bead-on-
doi: 10.1016/j.aime.2023.100121
plate weld model for parameter estimation towards effective
31. Deyev G, Deyev D. Surface Phenomena in Fusion Welding wire arc additive manufacturing simulation. Weld World.
st
Processes. 1 ed. United States: CRC Press; 2005. 2024;68(4):969-986.
doi: 10.1201/9781420036299 doi: 10.1007/s40194-024-01700-0
32. Ou W, Knapp GL, Mukherjee T, Wei Y, DebRoy T. An 42. Wang X, Meng D, Yi H, Yan Z, Xiao J, Chen S. A novel model
improved heat transfer and fluid flow model of wire- for directed energy deposition-arc based on in-order stacking
arc additive manufacturing. Int J Heat Mass Transf. of primitives. Virtual Phys Prototyp. 2024;19(1):e2291471.
2021;167:120835.
doi: 10.1080/17452759.2023.2291471
doi: 10.1016/j.ijheatmasstransfer.2020.120835
43. Guo Z, Jiang H, He L, Lei Z, Bai R. CNN-empowered
33. Liu C, Wu Y, Zhou J, Wen Y, Wang L, Xie L. Effect of in situ identification of heat source parameters from the cross-
electromagnetic field manipulation on the microstructure section profile of laser-welded zone. Int J Adv Manuf Technol.
and hardness of titanium alloy during laser melting 2024;130(11-12):5441-5455.
deposition. Mater Sci Addit Manuf. 2025;4(1):8332.
doi: 10.1007/s00170-024-13054-4
doi: 10.36922/msam.8332
44. Ilani MA, Banad YM. Modeling Melt Pool Geometry
34. Bai X, Colegrove P, Ding J, et al. Numerical analysis of heat in Metal Additive Manufacturing Using Goldak’s Semi-
transfer and fluid flow in multilayer deposition of PAW- Ellipsoidal Heat Source: A Data-Driven Computational
based wire and arc additive manufacturing. Int J Heat Mass Approach. Numer Anal [ArXiv Preprint]; 2024.
Transf. 2018;124:504-516.
doi: 10.48550/ARXIV.2404.08834
doi: 10.1016/j.ijheatmasstransfer.2018.03.085
45. Martukanitz R, Michaleris P, Palmer T, et al. Toward an
35. Belhadj M, Werda S, Belhadj A, Kromer R, Darnis P. integrated computational system for describing the additive
Thermal Analysis of Wire Arc Additive Manufacturing manufacturing process for metallic materials. Addit Manuf.
Process. ESAFORM 2021; 2021.
2014;1-4:52-63.
doi: 10.25518/esaform21.4095
doi: 10.1016/j.addma.2014.09.002
36. Liu S, Shin YC. Additive manufacturing of Ti6Al4V alloy:
A review. Mater Des. 2019;164:107552. 46. Simufact Infosheet Parallelization. Simufact Welding
Tutorial; 2018.
doi: 10.1016/j.matdes.2018.107552
47. Tröger JA, Hartmann S, Treutler K, Potschka A, Wesling V.
37. Wu B, Pan Z, Ding D, Cuiuri D, Li H. Effects of heat Simulation-based process parameter optimization for wire arc
accumulation on microstructure and mechanical additive manufacturing. Prog Addit Manuf. 2025;10(1):1-14.
properties of Ti6Al4V alloy deposited by wire arc additive
manufacturing. Addit Manuf. 2018;23:151-160. doi: 10.1007/s40964-024-00597-x
doi: 10.1016/j.addma.2018.08.004 48. Wang F, Williams S, Colegrove P, Antonysamy AA.
Microstructure and mechanical properties of wire and arc
38. Hönnige J, Colegrove P, Prangnell P, Ho A, Williams S. The additive manufactured Ti-6Al-4V. Metall Mater Trans A.
effect of thermal history on microstructural evolution, cold- 2013;44(2):968-977.
work refinement and α/β growth in Ti-6Al-4V wire + Arc
AM. Appl Phys [ArXiv Preprint]; 2018. doi: 10.1007/s11661-012-1444-6
doi: 10.48550/ARXIV.1811.02903 49. Bielik M, Neubauer E, Kitzmantel M, Neubauer I,
Kozeschnik E. A simulation approach for series production
39. Chujutalli JH, Lourenço MI, Estefen SF. Experimental- of plasma-based additive manufacturing of Ti-6Al-4V
based methodology for the double ellipsoidal heat source components. Math Model Weld Phenomena. 2022;13:361-393.
parameters in welding simulations. Mar Syst Ocean Technol.
2020;15(2):110-123. doi: 10.3217/978-3-85125-968-1-20
doi: 10.1007/s40868-020-00074-4 50. Graf M, Hälsig A, Höfer K, Awiszus B, Mayr P. Thermo-
mechanical modelling of wire-arc additive manufacturing
40. Yang Y, Lin H, Li Q. A computationally efficient thermo-
mechanical model with temporal acceleration for prediction (WAAM) of semi-finished products. Metals. 2018;8(12):1009.
of residual stresses and deformations in WAAM. Virtual doi: 10.3390/met8121009
Volume 4 Issue 3 (2025) 15 doi: 10.36922/MSAM025140021

