Page 42 - MSAM-4-3
P. 42

Materials Science in Additive Manufacturing                 Numerical simulation of plasma WAAM for Ti-6Al-4V



            30.  Sampaio RFV, Pragana JPM, Bragança IMF, Silva CMA,   Phys Prototyp. 2024;19(1):e2349683.
               Nielsen CV, Martins PAF. Modelling of wire-arc additive
               manufacturing a review. Adv Ind Manuf Eng. 2023;6:100121.     doi: 10.1080/17452759.2024.2349683
                                                               41.  Strobl D, Unger JF, Ghnatios C,  et  al. Efficient bead-on-
               doi: 10.1016/j.aime.2023.100121
                                                                  plate weld model for parameter estimation towards effective
            31.  Deyev G, Deyev D. Surface Phenomena in Fusion Welding   wire arc additive manufacturing simulation.  Weld World.
                       st
               Processes. 1  ed. United States: CRC Press; 2005.  2024;68(4):969-986.
               doi: 10.1201/9781420036299                         doi: 10.1007/s40194-024-01700-0
            32.  Ou  W,  Knapp GL,  Mukherjee  T,  Wei  Y,  DebRoy  T.  An   42.  Wang X, Meng D, Yi H, Yan Z, Xiao J, Chen S. A novel model
               improved heat transfer and fluid flow model of wire-  for directed energy deposition-arc based on in-order stacking
               arc additive manufacturing.  Int J Heat Mass Transf.   of primitives. Virtual Phys Prototyp. 2024;19(1):e2291471.
               2021;167:120835.
                                                                  doi: 10.1080/17452759.2023.2291471
               doi: 10.1016/j.ijheatmasstransfer.2020.120835
                                                               43.  Guo Z, Jiang H, He L, Lei Z, Bai R. CNN-empowered
            33.  Liu C, Wu Y, Zhou J, Wen Y, Wang L, Xie L. Effect of in situ   identification of heat source parameters from the cross-
               electromagnetic  field  manipulation  on  the  microstructure   section profile of laser-welded zone. Int J Adv Manuf Technol.
               and hardness of titanium alloy during laser melting   2024;130(11-12):5441-5455.
               deposition. Mater Sci Addit Manuf. 2025;4(1):8332.
                                                                  doi: 10.1007/s00170-024-13054-4
               doi: 10.36922/msam.8332
                                                               44.  Ilani MA, Banad YM. Modeling Melt Pool Geometry
            34.  Bai X, Colegrove P, Ding J, et al. Numerical analysis of heat   in Metal Additive Manufacturing Using Goldak’s Semi-
               transfer and fluid flow in multilayer deposition of PAW-  Ellipsoidal Heat Source: A  Data-Driven Computational
               based wire and arc additive manufacturing. Int J Heat Mass   Approach. Numer Anal [ArXiv Preprint]; 2024.
               Transf. 2018;124:504-516.
                                                                  doi: 10.48550/ARXIV.2404.08834
               doi: 10.1016/j.ijheatmasstransfer.2018.03.085
                                                               45.  Martukanitz R, Michaleris P, Palmer T,  et  al. Toward an
            35.  Belhadj M,  Werda S, Belhadj A, Kromer  R, Darnis P.   integrated computational system for describing the additive
               Thermal Analysis of Wire Arc Additive Manufacturing   manufacturing process for metallic materials. Addit Manuf.
               Process. ESAFORM 2021; 2021.
                                                                  2014;1-4:52-63.
               doi: 10.25518/esaform21.4095
                                                                  doi: 10.1016/j.addma.2014.09.002
            36.  Liu S, Shin YC. Additive manufacturing of Ti6Al4V alloy:
               A review. Mater Des. 2019;164:107552.           46.  Simufact Infosheet Parallelization. Simufact Welding
                                                                  Tutorial; 2018.
               doi: 10.1016/j.matdes.2018.107552
                                                               47.  Tröger JA, Hartmann S, Treutler K, Potschka A, Wesling V.
            37.  Wu B, Pan Z, Ding D, Cuiuri D, Li H. Effects of heat   Simulation-based process parameter optimization for wire arc
               accumulation  on  microstructure  and  mechanical  additive manufacturing. Prog Addit Manuf. 2025;10(1):1-14.
               properties of Ti6Al4V alloy deposited by wire arc additive
               manufacturing. Addit Manuf. 2018;23:151-160.       doi: 10.1007/s40964-024-00597-x
               doi: 10.1016/j.addma.2018.08.004                48.  Wang F, Williams S, Colegrove P, Antonysamy AA.
                                                                  Microstructure and mechanical properties of wire and arc
            38.  Hönnige J, Colegrove P, Prangnell P, Ho A, Williams S. The   additive manufactured Ti-6Al-4V.  Metall Mater Trans A.
               effect of thermal history on microstructural evolution, cold-  2013;44(2):968-977.
               work refinement and α/β growth in Ti-6Al-4V wire + Arc
               AM. Appl Phys [ArXiv Preprint]; 2018.              doi: 10.1007/s11661-012-1444-6
               doi: 10.48550/ARXIV.1811.02903                  49.  Bielik M, Neubauer E, Kitzmantel M, Neubauer I,
                                                                  Kozeschnik E. A simulation approach for series production
            39.  Chujutalli JH, Lourenço MI, Estefen SF. Experimental-  of  plasma-based  additive  manufacturing  of  Ti-6Al-4V
               based methodology for the double ellipsoidal heat source   components. Math Model Weld Phenomena. 2022;13:361-393.
               parameters in welding simulations. Mar Syst Ocean Technol.
               2020;15(2):110-123.                                doi: 10.3217/978-3-85125-968-1-20
               doi: 10.1007/s40868-020-00074-4                 50.  Graf M, Hälsig A, Höfer K, Awiszus B, Mayr P. Thermo-
                                                                  mechanical modelling of wire-arc additive manufacturing
            40.  Yang Y, Lin H, Li Q. A computationally efficient thermo-
               mechanical model with temporal acceleration for prediction   (WAAM) of semi-finished products. Metals. 2018;8(12):1009.
               of residual stresses and deformations in WAAM.  Virtual      doi: 10.3390/met8121009



            Volume 4 Issue 3 (2025)                         15                        doi: 10.36922/MSAM025140021
   37   38   39   40   41   42   43   44   45   46   47