Page 56 - MSAM-4-3
P. 56
Materials Science in Additive Manufacturing AI-driven defect detection in metal AM
doi: 10.1007/s11665-021-05919-6 2017;4(2):235-245.
7. Khan MF, Alam A, Siddiqui MA, et al. Real-time defect doi: 10.1007/s40684-017-0029-7
detection in 3D printing using machine learning. Mater 18. Chang LK, Chen RS, Tsai MC, et al. Machine learning applied
Today Proc. 2021;42:521-528.
to property prediction of metal additive manufacturing
doi: 10.1016/j.matpr.2020.10.482 products with textural features extraction. Int J Adv Manuf
8. Gunasegaram DR, Barnard AS, Matthews MJ, et al. Machine Technol. 2024;132(1):83-98.
learning-assisted in-situ adaptive strategies for the control doi: 10.1007/s00170-024-13165-y
of defects and anomalies in metal additive manufacturing.
Addit Manuf. 2024;81:104013. 19. Cannizzaro D, Varrella AG, Paradiso S, et al. Image Analytics
and Machine Learning for In-Situ Defects Detection in Additive
doi: 10.1016/j.addma.2024.104013 Manufacturing. United States: IEEE; 2021. p. 603-608.
9. Cataldo SD, Vinco S, Urgese G, et al. Optimizing quality 20. Akbari P, Zamani M, Mostafaei A. Machine learning
inspection and control in powder bed metal additive prediction of mechanical properties in metal additive
manufacturing: Challenges and research directions. Proc manufacturing. Addit Manuf. 2024;91:104320.
IEEE. 2021;109(4):326-346.
doi: 10.1016/j.addma.2024.104320
doi: 10.1109/JPROC.2021.3054628
21. Tang Y, Rahmani Dehaghani M, Sajadi P, Wang GG.
10. Xiao Y, Wang X, Yang W, et al. Data-driven prediction of Selecting subsets of source data for transfer learning with
future melt pool from built parts during metal additive applications in metal additive manufacturing. J Intell Manuf.
manufacturing. Addit Manuf. 2024;93:104438. 2024;36:3185-3206.
doi: 10.1016/j.addma.2024.104438 doi: 10.1007/s10845-024-02402-6
11. Tamir TS, Xiong G, Shen Z, et al. 3D printing in materials 22. Zhang Y, Safdar M, Xie J, Li J, Sage M, Zhao YF. A systematic
manufacturing industry: A realm of Industry 4.0. Heliyon. review on data of additive manufacturing for machine
2023;9(9):e19689. learning applications: The data quality, type, preprocessing,
doi: 10.1016/j.heliyon.2023.e19689 and management. J Intell Manuf. 2023;34(8):3305-3340.
12. Goh GD, Sing SL, Yeong WY. A review on machine learning doi: 10.1007/s10845-022-02017-9
in 3D printing: Applications, potential, and challenges. Artif 23. Liu X, Mileo A, Smeaton AF. A Systematic Review of Available
Intell Rev. 2021;54(1):63-94. Datasets in Additive Manufacturing. [arXiv Preprint]; 2024.
doi: 10.1007/s10462-020-09876-9 24. Djenouri Y, Srivastava G, Lin JCW. Applied AI in defect
13. Liu Q, Chen W, Yakubov V, Kruzic JJ, Wang CH, Li X. detection for additive manufacturing: Current literature,
Interpretable machine learning approach for exploring metrics, datasets, and open challenges. IEEE Instrum Meas
process-structure-property relationships in metal additive Mag. 2024;27(4):46-53.
manufacturing. Addit Manuf. 2024;85:104187. doi: 10.1109/MIM.2024.10540405
doi: 10.1016/j.addma.2024.104187 25. Westphal E, Seitz H. A machine learning method for defect
14. Ng WL, Goh GL, Goh GD, Ten JSJ, Yeong WY. Progress and detection and visualization in selective laser sintering
opportunities for machine learning in materials and processes based on convolutional neural networks. Addit Manuf.
of additive manufacturing. Adv Mater. 2024;36(34):2310006. 2021;41:101965.
doi: 10.1002/adma.202310006 doi: 10.1016/j.addma.2021.101965
15. Ukwaththa J, Herath S, Meddage DPP. A review of machine 26. Szymanik B, Psuj G, Hashemi M, Lopato P. Detection and
learning (ML) and explainable artificial intelligence (XAI) identification of defects in 3D-printed dielectric structures
methods in additive manufacturing (3D printing). Mater via thermographic inspection and deep neural networks.
Today Commun. 2024;41:110294. Materials. 2021;14:4168.
doi: 10.1016/j.mtcomm.2024.110294 doi: 10.3390/ma14154168
16. Kadam V, Kumar S, Bongale A, Wazarkar S, Kamat P, Patil S. 27. Ansari MA, Crampton A, Garrard R, Cai B, Attallah M.
Enhancing surface fault detection using machine learning A convolutional neural network (CNN) classification to
for 3D printed products. Appl Syst Innov. 2021;4(2):34. identify the presence of pores in powder bed fusion images.
Int J Adv Manuf Technol. 2022;120(7):5133-5150.
doi: 10.3390/asi4020034
doi: 10.1007/s00170-022-08995-7
17. Chua ZY, Ahn IH, Moon SK. Process monitoring and
inspection systems in metal additive manufacturing: Status 28. Kozhay K, Turarbek S, Asselbekova T, Ali MH,
and applications. Int J Precis Eng Manuf Green Technol. Shehab E. Convolutional neural network-based defect
Volume 4 Issue 3 (2025) 14 doi: 10.36922/MSAM025150022

