Page 56 - MSAM-4-3
P. 56

Materials Science in Additive Manufacturing                           AI-driven defect detection in metal AM



               doi: 10.1007/s11665-021-05919-6                    2017;4(2):235-245.
            7.   Khan MF, Alam A, Siddiqui MA,  et al. Real-time defect      doi: 10.1007/s40684-017-0029-7
               detection in 3D printing using machine learning.  Mater   18.  Chang LK, Chen RS, Tsai MC, et al. Machine learning applied
               Today Proc. 2021;42:521-528.
                                                                  to property prediction of metal additive manufacturing
               doi: 10.1016/j.matpr.2020.10.482                   products with textural features extraction. Int J Adv Manuf
            8.   Gunasegaram DR, Barnard AS, Matthews MJ, et al. Machine   Technol. 2024;132(1):83-98.
               learning-assisted in-situ adaptive strategies for the control      doi: 10.1007/s00170-024-13165-y
               of defects and anomalies in metal additive manufacturing.
               Addit Manuf. 2024;81:104013.                    19.  Cannizzaro D, Varrella AG, Paradiso S, et al. Image Analytics
                                                                  and Machine Learning for In-Situ Defects Detection in Additive
               doi: 10.1016/j.addma.2024.104013                   Manufacturing. United States: IEEE; 2021. p. 603-608.
            9.   Cataldo SD, Vinco S, Urgese G,  et al. Optimizing quality   20.  Akbari P, Zamani M, Mostafaei A. Machine learning
               inspection and control in powder bed metal additive   prediction of mechanical properties in metal additive
               manufacturing: Challenges and research directions.  Proc   manufacturing. Addit Manuf. 2024;91:104320.
               IEEE. 2021;109(4):326-346.
                                                                  doi: 10.1016/j.addma.2024.104320
               doi: 10.1109/JPROC.2021.3054628
                                                               21.  Tang Y, Rahmani Dehaghani M, Sajadi P, Wang GG.
            10.  Xiao Y, Wang X, Yang W, et al. Data-driven prediction of   Selecting subsets of source data for transfer learning with
               future melt pool from built parts during metal additive   applications in metal additive manufacturing. J Intell Manuf.
               manufacturing. Addit Manuf. 2024;93:104438.        2024;36:3185-3206.
               doi: 10.1016/j.addma.2024.104438                   doi: 10.1007/s10845-024-02402-6
            11.  Tamir TS, Xiong G, Shen Z, et al. 3D printing in materials   22.  Zhang Y, Safdar M, Xie J, Li J, Sage M, Zhao YF. A systematic
               manufacturing industry: A realm of Industry 4.0. Heliyon.   review on data of additive manufacturing for machine
               2023;9(9):e19689.                                  learning applications: The data quality, type, preprocessing,
               doi: 10.1016/j.heliyon.2023.e19689                 and management. J Intell Manuf. 2023;34(8):3305-3340.
            12.  Goh GD, Sing SL, Yeong WY. A review on machine learning      doi: 10.1007/s10845-022-02017-9
               in 3D printing: Applications, potential, and challenges. Artif   23.  Liu X, Mileo A, Smeaton AF. A Systematic Review of Available
               Intell Rev. 2021;54(1):63-94.                      Datasets in Additive Manufacturing. [arXiv Preprint]; 2024.
               doi: 10.1007/s10462-020-09876-9                 24.  Djenouri Y, Srivastava G, Lin JCW. Applied AI in defect
            13.  Liu Q, Chen W, Yakubov V, Kruzic JJ, Wang CH, Li X.   detection  for  additive  manufacturing:  Current  literature,
               Interpretable machine learning approach for exploring   metrics, datasets, and open challenges. IEEE Instrum Meas
               process-structure-property relationships in metal additive   Mag. 2024;27(4):46-53.
               manufacturing. Addit Manuf. 2024;85:104187.        doi: 10.1109/MIM.2024.10540405
               doi: 10.1016/j.addma.2024.104187                25.  Westphal E, Seitz H. A machine learning method for defect
            14.  Ng WL, Goh GL, Goh GD, Ten JSJ, Yeong WY. Progress and   detection and visualization in selective laser sintering
               opportunities for machine learning in materials and processes   based on convolutional neural networks.  Addit Manuf.
               of additive manufacturing. Adv Mater. 2024;36(34):2310006.  2021;41:101965.
               doi: 10.1002/adma.202310006                        doi: 10.1016/j.addma.2021.101965
            15.  Ukwaththa J, Herath S, Meddage DPP. A review of machine   26.  Szymanik B, Psuj G, Hashemi M, Lopato P. Detection and
               learning (ML) and explainable artificial intelligence (XAI)   identification of defects in 3D-printed dielectric structures
               methods in additive manufacturing (3D printing).  Mater   via thermographic inspection and deep neural networks.
               Today Commun. 2024;41:110294.                      Materials. 2021;14:4168.
               doi: 10.1016/j.mtcomm.2024.110294                  doi: 10.3390/ma14154168
            16.  Kadam V, Kumar S, Bongale A, Wazarkar S, Kamat P, Patil S.   27.  Ansari MA, Crampton A, Garrard R, Cai B, Attallah M.
               Enhancing surface fault detection using machine learning   A  convolutional neural network (CNN) classification to
               for 3D printed products. Appl Syst Innov. 2021;4(2):34.  identify the presence of pores in powder bed fusion images.
                                                                  Int J Adv Manuf Technol. 2022;120(7):5133-5150.
               doi: 10.3390/asi4020034
                                                                  doi: 10.1007/s00170-022-08995-7
            17.  Chua ZY, Ahn IH, Moon SK. Process monitoring and
               inspection systems in metal additive manufacturing: Status   28.  Kozhay  K,  Turarbek  S,  Asselbekova  T,  Ali  MH,
               and applications.  Int J Precis Eng Manuf Green Technol.   Shehab E. Convolutional neural network-based defect


            Volume 4 Issue 3 (2025)                         14                        doi: 10.36922/MSAM025150022
   51   52   53   54   55   56   57   58   59   60   61