Page 57 - MSAM-4-3
P. 57

Materials Science in Additive Manufacturing                           AI-driven defect detection in metal AM



               detection technique in FDM technology. Procedia Comput   Defect detection in laser-based powder bed fusion process
               Sci. 2024;231:119-128.                             using machine learning classification methods. IOP Conf Ser
               doi: 10.1016/j.procs.2023.12.183                   Mater Sci Eng. 2023;1296(1):012013.
            29.  Fu Y, Downey ARJ, Yuan L, Zhang T, Pratt A, Balogun Y.      doi: 10.1088/1757-899X/1296/1/012013
               Machine learning algorithms for defect detection in metal   42.  Schmitt AM, Sauer C, Höfflin D, Schiffler A. Powder
               laser-based additive manufacturing: A  review.  J  Manuf   bed monitoring using semantic image segmentation to
               Process. 2022;75:693-710.                          detect failures during 3D metal printing.  Sensors (Basel).
               doi: 10.1016/j.jmapro.2021.12.061                  2023;23(9):4183.
            30.  Han F, Zou J, Ai Y, Xu C, Liu S, Liu S. Image Classification      doi: 10.3390/s23094183
               and Analysis During the Additive Manufacturing Process   43.  Kuriachen B, Jeyaraj R, Raphael D, Ashok P, Sundari PS,
               Based on Deep Convolutional Neural Networks.  United   Paul  A.  Defect  detection  in  fused  deposition  modelling
               States: IEEE; 2019. p. 1-4.
                                                                  using lightweight convolutional neural networks. Eng Appl
            31.  Khan  IA,  Birkhofer  H,  Kunz  D,  Lukas  D,  Ploshikhin  V.   Artif Intell. 2025;141:109802.
               A random forest classifier for anomaly detection in laser-
               powder bed fusion using optical monitoring.  Materials      doi: 10.1016/j.engappai.2024.109802
               (Basel). 2023;16(19):6470.                      44.  Sousa J, Brandau B, Darabi R, et al. Artificial intelligence for
               doi: 10.3390/ma16196470                            control in laser-based additive manufacturing: A systematic
                                                                  review. IEEE Access. 2025;13:30845-30860.
            32.  Abhilash PM, Ahmed A. Convolutional neural network-
               based classification for improving the surface quality of      doi: 10.1109/ACCESS.2025.3537859
               metal additive manufactured components. Int J Adv Manuf   45.  Soori M, Jough FKG, Dastres R, Arezoo B. Additive
               Technol. 2023;126(9):3873-3885.                    manufacturing modification by artificial intelligence,
               doi: 10.1007/s00170-023-11388-z                    machine learning, and deep learning: A review. Addit Manuf
                                                                  Front. 2025;4(2):200198.
            33.  Lee KH, Lee HW, Yun GJ. A  defect detection framework
               using three-dimensional convolutional neural network (3D-     doi: 10.1016/j.amf.2025.200198
               CNN)  with  in-situ  monitoring  data  in  laser  powder  bed   46.  Paraskevoudis K, Karayannis P, Koumoulos EP. Real-time 3D
               fusion process. Optics Laser Technol. 2023;165:109571.
                                                                  printing remote defect detection (stringing) with computer
               doi: 10.1016/j.optlastec.2023.109571               vision and artificial intelligence. Processes. 2020;8(11):1464.
            34.  Wen H, Huang C, Guo S. The application of convolutional      doi: 10.3390/pr8111464
               neural networks (CNNs) to recognize defects in 3D-printed
               parts. Materials (Basel). 2021;14(10):2575.     47.  Wang Y, Wang Z, Liu W, et al. A novel depth-connected region-
                                                                  based convolutional neural network for small defect detection
               doi: 10.3390/ma14102575                            in additive manufacturing. Cognit Comput. 2024;17(1):36.
            35.  Yin X, Akmal JS, Salmi M, Björkstrand R. Data From: Annotated      doi: 10.1007/s12559-024-10397-8
               Image Dataset for Defects Detection in Laser Powder Bed Fusion.
               Geneva: Zenodo; 2025.                           48.  Dong K, Ni M, Liang C,  et al. Automatic detection and
                                                                  localization of internal defects in additively manufactured
               doi: 10.5281/zenodo.14996806                       aluminum alloy based on deep learning.  Measurement.
            36.  He K, Zhang X, Ren S, Sun J. Deep Residual Learning for   2025;244:116383.
               Image Recognition. United States: IEEE; 2016. p. 770-778.
                                                                  doi: 10.1016/j.measurement.2024.116383
            37.  Tan  M.  Efficientnet: Rethinking Model Scaling for   49.  Scime L, Siddel D, Baird S, Paquit V. Layer-wise anomaly
               Convolutional Neural Networks. [arXiv Preprint]; 2019.
                                                                  detection and  classification for  powder  bed  additive
            38.  Ren S. Faster R-CNN: Towards Real-Time Object Detection   manufacturing processes: A machine-agnostic algorithm for
               with Region Proposal Networks. [arXiv Preprint]; 2015.  real-time pixel-wise semantic segmentation. Addit Manuf.
            39.  Redmon J. You Only Look Once: Unified, Real-Time Object   2020;36:101453.
               Detection. United States: IEEE; 2016.              doi: 10.1016/j.addma.2020.101453
            40.  Chen K, Zhang P, Yan H, et al. A review of machine learning   50.  Ferguson M, Ak R, Lee YTT, Law KH.  Detection and
               in  additive manufacturing:  Design  and process.  Int J Adv   segmentation of manufacturing defects with convolutional
               Manuf Technol. 2024;135(3):1051-1087.              neural networks and transfer learning. Smart Sustain Manuf
               doi: 10.1007/s00170-024-14543-2                    Syst. 2018;2(1):137-164.
            41.  Akmal J, Macarie M, Björkstrand R, Minet K, Salmi M.      doi: 10.1520/SSMS20180033


            Volume 4 Issue 3 (2025)                         15                        doi: 10.36922/MSAM025150022
   52   53   54   55   56   57   58   59   60   61   62