Page 140 - OR-1-2
P. 140
osteoporosis via HES1. J Cell Mol Med. 2021;25(13):6242-6257. 39. Isaac AH, Recalde Phillips SY, Ruben E, et al. Impact of PEG
sensitization on the efficacy of PEG hydrogel-mediated tissue
doi: 10.1111/jcmm.16579
engineering. Nat Commun. 2024;15(1):3283.
32. Wang X, Tian Y, Liang X, et al. Bergamottin promotes
osteoblast differentiation and bone formation via activating doi: 10.1038/s41467-024-46327-3
the Wnt/β-catenin signaling pathway. Food Funct. 40. Li S, Dong S, Xu W, et al. Antibacterial hydrogels. Adv Sci
2022;13(5):2913-2924. (Weinh). 2018;5(5):1700527.
doi: 10.1039/d1fo02755g doi: 10.1002/advs.201700527
33. Chen Z, Zhao F, Liang C, et al. Silencing of miR-138-5p 41. Hao L, Tao X, Feng M, et al. Stepwise multi-cross-linking
sensitizes bone anabolic action to mechanical stimuli. bioink for 3D embedded bioprinting to promote full-
Theranostics. 2020;10(26):12263-12278. thickness wound healing. ACS Appl Mater Interfaces.
doi: 10.7150/thno.53009 2023;15(20):24034-24046.
34. Burwell RG. Studies in the transplantation of bone. 8. Treated doi: 10.1021/acsami.3c00688
composite homograft-autografts of cancellous bone: An 42. Zhan Y, Yang K, Zhao J, et al. Injectable and in situ formed
analysis of inductive mechanisms in bone transplantation. dual-network hydrogel reinforced by mesoporous silica
J Bone Joint Surg Br. 1966;48(3):532-566. nanoparticles and loaded with BMP-4 for the closure and repair
35. Filippi M, Born G, Chaaban M, Scherberich A. Natural of skull defects. ACS Biomater Sci Eng. 2024;10(4):2414-2425.
polymeric scaffolds in bone regeneration. Front Bioeng doi: 10.1021/acsbiomaterials.3c01685
Biotechnol. 2020;8:474.
43. Pérez-Lloret M, Erxleben A. Improved and highly
doi: 10.3389/fbioe.2020.00474 reproducible synthesis of methacrylated hyaluronic
36. Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B. acid with tailored degrees of substitution. ACS Omega.
Transformation of biphasic calcium phosphate ceramics in 2024;9(24):25914-25921.
vivo: Ultrastructural and physicochemical characterization. doi: 10.1021/acsomega.4c00372
J Biomed Mater Res. 1989;23(8):883-894.
44. Aouabdi S, Nedjadi T, Alsiary R, Mouffouk F, Ansari HR.
doi: 10.1002/jbm.820230806 Transcriptomics demonstrates significant biological effect
37. Vallet-Regí M, Ruiz-Hernández E. Bioceramics: From of growing stem cells on RGD-cotton scaffold. Tissue Eng
bone regeneration to cancer nanomedicine. Adv Mater. Part A. 2024;30(15-16):485-498.
2011;23(44):5177-218. doi: 10.1089/ten.TEA.2023.0333
doi: 10.1002/adma.201101586 45. Moghaddam AS, Khonakdar HA, Arjmand M, et al. Review of
38. Fereshteh Z. Freeze-drying Technologies for 3D Scaffold bioprinting in regenerative medicine: Naturally derived bioinks
Engineering. Delhi: Woodhead Publishing; 2018. p. 151-174. and stem cells. ACS Appl Bio Mater. 2021;4(5):4049-4070.
doi: 10.1016/B978-0-08-100979-6.00007-0 doi: 10.1021/acsabm.1c00219
Volume 1 Issue 2 (2025) 20 doi: 10.36922/OR025040003

