Page 145 - OR-1-3
P. 145

142.  James  Clinton  PM.  Initiation,  expansion,  and  2019;15(24):e1805530.
                cryopreservation of human primary tissue-derived normal      doi: 10.1002/smll.201805530
                and diseased  organoids in  embedded three-dimensional
                culture. Curr Protoc Cell Biol. 2019;82:e66.  153. Zhao F, Cheng J, Sun M, et al. Digestion degree is a key factor
                                                                 to regulate the printability of pure tendon decellularized
                doi: 10.1002/cpcb.66
                                                                 extracellular matrix bio-ink in extrusion-based 3D cell
            143. Benage LG, Sweeney JD, Giers MB, Balasubramanian R.   printing. Biofabrication. 2020;12(4):045011.
                Dynamic load model systems of tendon inflammation and      doi: 10.1088/1758-5090/aba411
                mechanobiology. Front Bioeng Biotechnol. 2022;10:896336.
                                                              154. Wang J, Wu Y, Li G,  et al. Engineering large-scale
                doi: 10.3389/fbioe.2022.896336
                                                                 self-mineralizing bone organoids with bone matrix-
            144. Abdel  FA,  Ranga  A.  Nanoparticles  as  versatile  tools  for   inspired hydroxyapatite hybrid bioinks.  Adv Mater.
                mechanotransduction in tissues and organoids. Front Bioeng   2024;36(30):e2309875.
                Biotechnol. 2020;8:240.
                                                                 doi: 10.1002/adma.202309875
                doi: 10.3389/fbioe.2020.00240
                                                              155. Vidler C, Halwes M, Kolesnik K, et al. Dynamic interface
            145. Sun Y, Sheng R, Cao Z, et al. Bioactive fiber-reinforced   printing. Nature. 2024;634(8036):1096-1102.
                hydrogel to tailor cell microenvironment for structural and      doi: 10.1038/s41586-024-08077-6
                functional regeneration of myotendinous junction. Sci Adv.
                2024;10(17):eadm7164.                         156. Gonzalez-Ferrer J, Lehrer J, O’Farrell A, et al. SIMS: A deep-
                                                                 learning label transfer tool for single-cell RNA sequencing
                doi: 10.1126/sciadv.adm7164
                                                                 analysis. Cell Genom. 2024;4(6):100581.
            146. Sheng R, Liu J, Zhang W,  et al. Material stiffness in
                cooperation with macrophage paracrine signals determines      doi: 10.1016/j.xgen.2024.100581
                the tenogenic differentiation of mesenchymal stem cells. Adv   157. Yan R, Fan C, Yin Z, Wang T, Chen X. Potential applications
                Sci (Weinh). 2023;10(17):e2206814.               of deep learning in single-cell RNA sequencing analysis
                                                                 for cell therapy and regenerative medicine.  Stem Cells.
                doi: 10.1002/advs.202206814
                                                                 2021;39(5):511-521.
            147. Ajalik RE, Alenchery RG, Cognetti JS, et al. Human organ-on-
                a-chip microphysiological systems to model musculoskeletal      doi: 10.1002/stem.3336
                pathologies and accelerate therapeutic discovery.  Front   158. Wang H, Li X, You X, Zhao G. Harnessing the power of
                Bioeng Biotechnol. 2022;10:846230.               artificial intelligence for human living organoid research.
                                                                 Bioact Mater. 2024;42:140-164.
                doi: 10.3389/fbioe.2022.846230
                                                                 doi: 10.1016/j.bioactmat.2024.08.027
            148. Ajalik RE, Linares I, Alenchery RG,  et al. Human
                tendon-on-a-chip  for  modeling  the  myofibroblast  159. Du X, Chen Z, Li Q, et al. Organoids revealed: Morphological
                microenvironment in peritendinous fibrosis.  Adv Healthc   analysis of the profound next generation in-vitro model with
                Mater. 2025;14(4):e2403116.                      artificial intelligence. Biodes Manuf. 2023;6(3):319-339.
                doi: 10.1002/adhm.202403116                      doi: 10.1007/s42242-022-00226-y
            149. Bakht SM, Pardo A, Gomez-Florit M, et al. Human tendon-  160. Mukashyaka P, Kumar P, Mellert DJ, et al. High-throughput
                on-chip: Unveiling the effect of core compartment-T cell   deconvolution of 3D organoid dynamics at cellular resolution
                spatiotemporal crosstalk at the onset of tendon inflammation.   for cancer  pharmacology with cellos.  Nat Commun.
                Adv Sci (Weinh). 2024;11(41):e2401170.           2023;14(1):8406.
                doi: 10.1002/advs.202401170                      doi: 10.1038/s41467-023-44162-6
            150. Su W, Yang Q, Li T,  et al. Electrospun aligned nanofiber   161. Lefferts JW, Kroes S, Smith MB, et al. OrgaSegment: Deep-
                yarns constructed biomimetic M-type interface integrated   learning based organoid segmentation to quantify CFTR
                into precise co-culture system as muscle-tendon junction-  dependent fluid secretion. Commun Biol. 2024;7(1):319.
                on-a-chip for drug development.  Small Methods.      doi: 10.1038/s42003-024-05966-4
                2024;8(9):e2301754.
                                                              162. Zhu YX, Huang JQ, Ming YY, Zhuang Z, Xia H.
                doi: 10.1002/smtd.202301754
                                                                 Screening  of key  biomarkers  of tendinopathy  based  on
            151. Zhang Y, Lei T, Tang C,  et al. 3D printing of chemical-  bioinformatics and machine learning algorithms. PLoS One.
                empowered tendon stem/progenitor cells for functional   2021;16(10):e0259475.
                tissue repair. Biomaterials. 2021;271:120722.
                                                                 doi: 10.1371/journal.pone.0259475
                doi: 10.1016/j.biomaterials.2021.120722
                                                              163. Dursun G, Tandale SB, Gulakala R, et al. Development of
            152. Ostrovidov S, Salehi S, Costantini M,  et al. 3D   convolutional neural networks for recognition of tenogenic
                bioprinting in skeletal muscle tissue engineering.  Small.   differentiation based on cellular morphology.  Comput


            Volume 1 Issue 3 (2025)                         25                           doi: 10.36922/OR025170016
   140   141   142   143   144   145   146   147   148   149   150