Page 145 - OR-1-3
P. 145
142. James Clinton PM. Initiation, expansion, and 2019;15(24):e1805530.
cryopreservation of human primary tissue-derived normal doi: 10.1002/smll.201805530
and diseased organoids in embedded three-dimensional
culture. Curr Protoc Cell Biol. 2019;82:e66. 153. Zhao F, Cheng J, Sun M, et al. Digestion degree is a key factor
to regulate the printability of pure tendon decellularized
doi: 10.1002/cpcb.66
extracellular matrix bio-ink in extrusion-based 3D cell
143. Benage LG, Sweeney JD, Giers MB, Balasubramanian R. printing. Biofabrication. 2020;12(4):045011.
Dynamic load model systems of tendon inflammation and doi: 10.1088/1758-5090/aba411
mechanobiology. Front Bioeng Biotechnol. 2022;10:896336.
154. Wang J, Wu Y, Li G, et al. Engineering large-scale
doi: 10.3389/fbioe.2022.896336
self-mineralizing bone organoids with bone matrix-
144. Abdel FA, Ranga A. Nanoparticles as versatile tools for inspired hydroxyapatite hybrid bioinks. Adv Mater.
mechanotransduction in tissues and organoids. Front Bioeng 2024;36(30):e2309875.
Biotechnol. 2020;8:240.
doi: 10.1002/adma.202309875
doi: 10.3389/fbioe.2020.00240
155. Vidler C, Halwes M, Kolesnik K, et al. Dynamic interface
145. Sun Y, Sheng R, Cao Z, et al. Bioactive fiber-reinforced printing. Nature. 2024;634(8036):1096-1102.
hydrogel to tailor cell microenvironment for structural and doi: 10.1038/s41586-024-08077-6
functional regeneration of myotendinous junction. Sci Adv.
2024;10(17):eadm7164. 156. Gonzalez-Ferrer J, Lehrer J, O’Farrell A, et al. SIMS: A deep-
learning label transfer tool for single-cell RNA sequencing
doi: 10.1126/sciadv.adm7164
analysis. Cell Genom. 2024;4(6):100581.
146. Sheng R, Liu J, Zhang W, et al. Material stiffness in
cooperation with macrophage paracrine signals determines doi: 10.1016/j.xgen.2024.100581
the tenogenic differentiation of mesenchymal stem cells. Adv 157. Yan R, Fan C, Yin Z, Wang T, Chen X. Potential applications
Sci (Weinh). 2023;10(17):e2206814. of deep learning in single-cell RNA sequencing analysis
for cell therapy and regenerative medicine. Stem Cells.
doi: 10.1002/advs.202206814
2021;39(5):511-521.
147. Ajalik RE, Alenchery RG, Cognetti JS, et al. Human organ-on-
a-chip microphysiological systems to model musculoskeletal doi: 10.1002/stem.3336
pathologies and accelerate therapeutic discovery. Front 158. Wang H, Li X, You X, Zhao G. Harnessing the power of
Bioeng Biotechnol. 2022;10:846230. artificial intelligence for human living organoid research.
Bioact Mater. 2024;42:140-164.
doi: 10.3389/fbioe.2022.846230
doi: 10.1016/j.bioactmat.2024.08.027
148. Ajalik RE, Linares I, Alenchery RG, et al. Human
tendon-on-a-chip for modeling the myofibroblast 159. Du X, Chen Z, Li Q, et al. Organoids revealed: Morphological
microenvironment in peritendinous fibrosis. Adv Healthc analysis of the profound next generation in-vitro model with
Mater. 2025;14(4):e2403116. artificial intelligence. Biodes Manuf. 2023;6(3):319-339.
doi: 10.1002/adhm.202403116 doi: 10.1007/s42242-022-00226-y
149. Bakht SM, Pardo A, Gomez-Florit M, et al. Human tendon- 160. Mukashyaka P, Kumar P, Mellert DJ, et al. High-throughput
on-chip: Unveiling the effect of core compartment-T cell deconvolution of 3D organoid dynamics at cellular resolution
spatiotemporal crosstalk at the onset of tendon inflammation. for cancer pharmacology with cellos. Nat Commun.
Adv Sci (Weinh). 2024;11(41):e2401170. 2023;14(1):8406.
doi: 10.1002/advs.202401170 doi: 10.1038/s41467-023-44162-6
150. Su W, Yang Q, Li T, et al. Electrospun aligned nanofiber 161. Lefferts JW, Kroes S, Smith MB, et al. OrgaSegment: Deep-
yarns constructed biomimetic M-type interface integrated learning based organoid segmentation to quantify CFTR
into precise co-culture system as muscle-tendon junction- dependent fluid secretion. Commun Biol. 2024;7(1):319.
on-a-chip for drug development. Small Methods. doi: 10.1038/s42003-024-05966-4
2024;8(9):e2301754.
162. Zhu YX, Huang JQ, Ming YY, Zhuang Z, Xia H.
doi: 10.1002/smtd.202301754
Screening of key biomarkers of tendinopathy based on
151. Zhang Y, Lei T, Tang C, et al. 3D printing of chemical- bioinformatics and machine learning algorithms. PLoS One.
empowered tendon stem/progenitor cells for functional 2021;16(10):e0259475.
tissue repair. Biomaterials. 2021;271:120722.
doi: 10.1371/journal.pone.0259475
doi: 10.1016/j.biomaterials.2021.120722
163. Dursun G, Tandale SB, Gulakala R, et al. Development of
152. Ostrovidov S, Salehi S, Costantini M, et al. 3D convolutional neural networks for recognition of tenogenic
bioprinting in skeletal muscle tissue engineering. Small. differentiation based on cellular morphology. Comput
Volume 1 Issue 3 (2025) 25 doi: 10.36922/OR025170016

