Page 56 - OR-1-3
P. 56

235.  Magdalon J, Sanchez-Sanchez SM, Griesi-Oliveira K,      doi: 10.3389/fnins.2021.659601
                 Sertie AL. Dysfunctional mTORC1 signaling: A convergent   246.  Notaras M, Lodhi A, Dundar F,  et al. Schizophrenia is
                 mechanism between syndromic and nonsyndromic forms   defined by cell-specific neuropathology and multiple
                 of autism spectrum disorder? Int J Mol Sci. 2017;18(3):659.
                                                                  neurodevelopmental mechanisms in patient-derived
                 doi: 10.3390/ijms18030659                        cerebral organoids. Mol Psychiatry. 2022;27(3):1416-1434.
            236.  Urresti J, Zhang P, Moran-Losada P,  et al. Cortical      doi: 10.1038/s41380-021-01316-6
                 organoids  model  early brain  development  disrupted by   247.  Notaras M, Lodhi A, Fang H, Greening D, Colak D. The
                 16p11.2 copy number variants in autism.  Mol Psychiatry.   proteomic architecture of schizophrenia iPSC-derived
                 2021;26(12):7560-7580.
                                                                  cerebral organoids reveals alterations in GWAS and neuronal
                 doi: 10.1038/s41380-021-01243-6                  development factors. Transl Psychiatry. 2021;11(1):541.
            237.  Chan WK, Griffiths R, Price DJ, Mason JO. Cerebral      doi: 10.1038/s41398-021-01664-5
                 organoids as tools to identify the developmental roots of   248.  Stachowiak EK, Benson CA, Narla ST,  et al. Cerebral
                 autism. Mol Autism. 2020;11(1):58.               organoids reveal early cortical maldevelopment in
                 doi: 10.1186/s13229-020-00360-3                  schizophrenia-computational anatomy and genomics, role
                                                                  of FGFR1. Transl Psychiatry. 2017;7(11):6.
            238.  Santos JLS, Araujo CA, Rocha CAG, Costa-Ferro ZSM,
                 Souza  BSF. Modeling autism spectrum disorders with      doi: 10.1038/s41398-017-0054-x
                 induced pluripotent stem cell-derived brain organoids.   249.  Fink JJ, Robinson TM, Germain ND,  et al. Disrupted
                 Biomolecules. 2023;13(2):260.                    neuronal maturation in  Angelman syndrome-derived
                 doi: 10.3390/biom13020260                        induced pluripotent stem cells. Nat Commun. 2017;8:15038.
            239.  Birey F, Andersen J, Makinson CD,  et al. Assembly of      doi: 10.1038/ncomms15038
                 functionally integrated human forebrain spheroids. Nature.   250.  Camoes Dos Santos J, Appleton C, Cazaux Mateus F,
                 2017;545(7652):54-59.                            Covas  R, Bekman EP, da Rocha ST. Stem cell models of
                 doi: 10.1038/nature22330                         Angelman syndrome. Front Cell Dev Biol. 2023;11:1274040.
            240.  Pasca SP, Portmann T, Voineagu I, et al. Using iPSC-derived      doi: 10.3389/fcell.2023.1274040
                 neurons to uncover cellular phenotypes associated with   251.  Sen D, Voulgaropoulos A, Drobna Z, Keung AJ. Human
                 Timothy syndrome. Nat Med. 2011;17(12):1657-1662.  cerebral  organoids  reveal  early  spatiotemporal  dynamics
                 doi: 10.1038/nm.2576                             and pharmacological responses of UBE3A.  Stem Cell
                                                                  Reports. 2020;15(4):845-854.
            241.  Birey F, Li MY, Gordon A, et al. Dissecting the molecular
                 basis  of human  interneuron  migration in forebrain      doi: 10.1016/j.stemcr.2020.08.006
                 assembloids from Timothy syndrome.  Cell Stem Cell.   252.  Zang Z, Yin H, Du Z, et al. Valproic acid exposure decreases
                 2022;29(2):248-264.e7.                           neurogenic potential of outer radial glia in human brain
                 doi: 10.1016/j.stem.2021.11.011                  organoids. Front Mol Neurosci. 2022;15:1023765.
            242.  Xu R, Brawner AT, Li S,  et al. OLIG2 drives abnormal      doi: 10.3389/fnmol.2022.1023765
                 neurodevelopmental phenotypes in human iPSC-based   253.  Park G, Jang WE, Kim S, et al. Dysregulation of the Wnt/
                 organoid and chimeric mouse models of down syndrome.   beta-catenin signaling pathway via Rnf146 upregulation in
                 Cell Stem Cell. 2019;24(6):908-926.e8.           a VPA-induced mouse model of autism spectrum disorder.
                 doi: 10.1016/j.stem.2019.04.014                  Exp Mol Med. 2023;55(8):1783-1794.
            243.  Liu W, Zhou H, Liu L,  et al. Disruption of neurogenesis      doi: 10.1038/s12276-023-01065-2
                 and cortical development in transgenic mice misexpressing   254.  Osaki T, Delepine C, Osako Y,  et al. Early differential
                 Olig2, a gene in the Down syndrome critical region.   impact of MeCP2 mutations on functional networks in
                 Neurobiol Dis. 2015;77:106-116.                  Rett syndrome patient-derived human cerebral organoids.
                 doi: 10.1016/j.nbd.2015.02.021                   bioRxiv. 2024.
            244.  Chen C, Jiang P, Xue H, et al. Role of astroglia in Down’s      doi: 10.1101/2024.08.10.607464
                 syndrome revealed by patient-derived human-induced   255.  Haase FD, Coorey B, Riley L, Cantrill LC, Tam PPL,
                 pluripotent stem cells. Nat Commun. 2014;5:4430.  Gold WA. Pre-clinical investigation of rett syndrome using
                 doi: 10.1038/ncomms5430                          human stem cell-based disease models.  Front Neurosci.
                                                                  2021;15:698812.
            245.  Szu J, Wojcinski A, Jiang P, Kesari S. Impact of the olig
                 family  on  neurodevelopmental  disorders.  Front Neurosci.      doi: 10.3389/fnins.2021.698812
                 2021;15:659601.                              256.  Stoppel DC, McCamphill PK, Senter RK, Heynen AJ,



            Volume 1 Issue 3 (2025)                         30                           doi: 10.36922/OR025100010
   51   52   53   54   55   56   57   58   59   60   61