Page 51 - OR-1-3
P. 51

fluorescence imaging with the metabolic flux assay reveals   optimization in three-dimensional tissue constructs with
                 insights into mitochondrial properties and functions.   applications and insights in cerebral organoids. Tissue Eng
                 Commun Biol. 2020;3(1):271.                      Part C Methods. 2016;22(3):221-249.
                 doi: 10.1038/s42003-020-0988-z                   doi: 10.1089/ten.TEC.2015.0375
            123.  Choi NW, Verbridge SS, Williams RM, et al. Phosphorescent   134.  Hautefort I, Poletti M, Papp D, Korcsmaros T. Everything
                 nanoparticles  for  quantitative  measurements  of  you always wanted to know about organoid-based models
                 oxygen profiles  in vitro and  in vivo.  Biomaterials.   (and never dared to ask). Cell Mol Gastroenterol Hepatol.
                 2012;33(9):2710-2722.                            2022;14(2):311-331.
                 doi: 10.1016/j.biomaterials.2011.11.048          doi: 10.1016/j.jcmgh.2022.04.012
            124.  Debruyne  AC,  Okkelman IA,  Heymans  N,  et al.  Live   135.  Cho AN, Jin Y, An Y, et al. Microfluidic device with brain
                 microscopy of multicellular spheroids with the multimodal   extracellular matrix promotes structural and functional
                 near-infrared  nanoparticles  reveals  differences  in  maturation of human brain organoids.  Nat Commun.
                 oxygenation gradients. ACS Nano. 2024;18(19):12168-12186.  2021;12(1):4730.
                 doi: 10.1021/acsnano.3c12539                     doi: 10.1038/s41467-021-24775-5
            125.  Wang R, Yin Y, Li J,  et al. Global stable-isotope tracing   136.  Gonzalez P, Lozano P, Ros G, Solano F. Hyperglycemia
                 metabolomics reveals system-wide metabolic alternations   and oxidative stress: An integral, updated and critical
                 in aging Drosophila. Nat Commun. 2022;13(1):3518.  overview of their metabolic interconnections. Int J Mol Sci.
                 doi: 10.1038/s41467-022-31268-6                  2023;24(11):9352.
            126.  Allen DK, Young JD. Tracing metabolic flux through time      doi: 10.3390/ijms24119352
                 and space with isotope labeling experiments.  Curr Opin   137.  Murphy SE, Sweedler JV. Metabolomics-based mass
                 Biotechnol. 2020;64:92-100.                      spectrometry methods to analyze the chemical content of
                 doi: 10.1016/j.copbio.2019.11.003                3D organoid models. Analyst. 2022;147(13):2918-2929.
            127.  Jang C, Chen L, Rabinowitz JD. Metabolomics and isotope      doi: 10.1039/d2an00599a
                 tracing. Cell. 2018;173(4):822-837.          138.  Wang H, Brown PC, Chow ECY, et al. 3D cell culture models:
                 doi: 10.1016/j.cell.2018.03.055                  Drug pharmacokinetics, safety assessment, and regulatory
                                                                  consideration. Clin Transl Sci. 2021;14(5):1659-1680.
            128.  Legnini I, Emmenegger L, Zappulo A, et al. Spatiotemporal,
                 optogenetic control of gene expression in organoids.  Nat      doi: 10.1111/cts.13066
                 Methods. 2023;20(10):1544-1552.              139.  Sharick JT, Walsh CM, Sprackling CM,  et al. Metabolic
                 doi: 10.1038/s41592-023-01986-w                  heterogeneity in patient tumor-derived organoids by
                                                                  primary site and drug treatment. Front Oncol. 2020;10:553.
            129.  Shiri Z, Simorgh S, Naderi S, Baharvand H. Optogenetics
                 in the era of cerebral organoids.  Trends Biotechnol.      doi: 10.3389/fonc.2020.00553
                 2019;37(12):1282-1294.                       140.  de Lemos L, Antas P, Ferreira IS,  et al. Modelling
                 doi: 10.1016/j.tibtech.2019.05.009               neurodegeneration and inflammation in early diabetic
                                                                  retinopathy  using  3D  human  retinal  organoids.  In  Vitro
            130.  Danzi F, Pacchiana R, Mafficini A, et al. To metabolomics   Model. 2024;3(1):33-48.
                 and beyond: A technological portfolio to investigate cancer
                 metabolism. Signal Transduct Target Ther. 2023;8(1):137.     doi: 10.1007/s44164-024-00068-1
                 doi: 10.1038/s41392-023-01380-0              141.  Zhang S, Liu L, Li X, et al. Transcriptomic and proteomic
                                                                  sequencing unveils the role of vitamin D and metabolic flux
            131.  Glibetic N, Bowman S, Skaggs T, Weichhaus M. The use   shifts in the induction of human hepatic organoids. Stem
                 of patient-derived organoids in the study of molecular   Cell Res Ther. 2024;15(1):478.
                 metabolic adaptation in breast cancer.  Int J Mol Sci.
                 2024;25(19):10503.                               doi: 10.1186/s13287-024-04101-8
                 doi: 10.3390/ijms251910503                   142.  Tasnim K, Liu J. Emerging bioelectronics for brain organoid
                                                                  electrophysiology. J Mol Biol. 2022;434(3):167165.
            132.  Cappuccio  G,  Khalil  SM, Osenberg  S, Li  F, Maletic-
                 Savatic M. Mass spectrometry imaging as an emerging tool      doi: 10.1016/j.jmb.2021.167165
                 for studying metabolism in human brain organoids. Front   143.  Ciarpella F, Zamfir RG, Campanelli A,  et al. Murine
                 Mol Biosci. 2023;10:1181965.                     cerebral organoids develop network of functional
                 doi: 10.3389/fmolb.2023.1181965                  neurons and hippocampal brain region identity.  iScience.
                                                                  2021;24(12):103438.
            133.  McMurtrey RJ. Analytic models of oxygen and nutrient
                 diffusion, metabolism dynamics, and architecture      doi: 10.1016/j.isci.2021.103438


            Volume 1 Issue 3 (2025)                         25                           doi: 10.36922/OR025100010
   46   47   48   49   50   51   52   53   54   55   56