Page 50 - OR-1-3
P. 50
100. Lu J, Sheng Y, Qian W, Pan M, Zhao X, Ge Q. scRNA-seq doi: 10.1038/s41467-024-55447-9
data analysis method to improve analysis performance. IET 112. Cunnane SC, Trushina E, Morland C, et al. Brain
Nanobiotechnol. 2023;17(3):246-256.
energy rescue: an emerging therapeutic concept for
doi: 10.1049/nbt2.12115 neurodegenerative disorders of ageing. Nat Rev Drug
Discov. 2020;19(9):609-633.
101. Guo L, Li C, Gong W. Toward reproducible tumor organoid
culture: Focusing on primary liver cancer. Front Immunol. doi: 10.1038/s41573-020-0072-x
2024;15:1290504.
113. Clemente-Suarez VJ, Beltran-Velasco AI, Redondo-Florez L,
doi: 10.3389/fimmu.2024.1290504 Martin-Rodriguez A, Yanez-Sepulveda R, Tornero-Aguilera JF.
102. Corsini NS, Knoblich JA. Human organoids: New strategies Neuro-vulnerability in energy metabolism regulation: A
and methods for analyzing human development and disease. comprehensive narrative review. Nutrients. 2023;15(14):3106.
Cell. 2022;185(15):2756-2769. doi: 10.3390/nu15143106
doi: 10.1016/j.cell.2022.06.051 114. Song Y, Lu S, Gao F, Wei T, Ma W. The application of organoid
103. Piwecka M, Rajewsky N, Rybak-Wolf A. Single-cell and models in research into metabolic diseases. Diabetes Obes
spatial transcriptomics: Deciphering brain complexity in Metab. 2024;26(3):809-819.
health and disease. Nat Rev Neurol. 2023;19(6):346-362. doi: 10.1111/dom.15390
doi: 10.1038/s41582-023-00809-y 115. Hendriks D, Artegiani B, Margaritis T, Zoutendijk I,
104. Potter SS. Single-cell RNA sequencing for the study of Chuva de Sousa Lopes S, Clevers H. Mapping of mitogen and
development, physiology and disease. Nat Rev Nephrol. metabolic sensitivity in organoids defines requirements for
2018;14(8):479-492. human hepatocyte growth. Nat Commun. 2024;15(1):4034.
doi: 10.1038/s41581-018-0021-7 doi: 10.1038/s41467-024-48550-4
105. Fang S, Chen B, Zhang Y, et al. Computational approaches 116. Kimura M, Iguchi T, Iwasawa K, et al. En masse organoid
and challenges in spatial transcriptomics. Genomics phenotyping informs metabolic-associated genetic
Proteomics Bioinformatics. 2023;21(1):24-47. susceptibility to NASH. Cell. 2022;185(22):4216-4232.e16.
doi: 10.1016/j.gpb.2022.10.001 doi: 10.1016/j.cell.2022.09.031
106. Lahnemann D, Koster J, Szczurek E, et al. Eleven grand 117. Min X, Zhao Y, Yu M, et al. Spatially resolved metabolomics:
challenges in single-cell data science. Genome Biol. From metabolite mapping to function visualising. Clin
2020;21(1):31. Transl Med. 2024;14(11):e70031.
doi: 10.1186/s13059-020-1926-6 doi: 10.1002/ctm2.70031
107. Flores JE, Claborne DM, Weller ZD, Webb-Robertson BM, 118. Lin A, Sved Skottvoll F, Rayner S, et al. 3D cell culture
Waters KM, Bramer LM. Missing data in multi-omics models and organ-on-a-chip: Meet separation science and
integration: Recent advances through artificial intelligence. mass spectrometry. Electrophoresis. 2020;41(1-2):56-64.
Front Artif Intell. 2023;6:1098308. doi: 10.1002/elps.201900170
doi: 10.3389/frai.2023.1098308 119. Okkelman IA, Neto N, Papkovsky DB, Monaghan MG,
108. Luo Y, Zhao C, Chen F. Multiomics research: Principles and Dmitriev RI. A deeper understanding of intestinal organoid
challenges in integrated analysis. Biodes Res. 2024;6:0059. metabolism revealed by combining fluorescence lifetime
imaging microscopy (FLIM) and extracellular flux analyses.
doi: 10.34133/bdr.0059
Redox Biol. 2020;30:101420.
109. He C, Kalafut NC, Sandoval SO, et al. BOMA, a machine- doi: 10.1016/j.redox.2019.101420
learning framework for comparative gene expression
analysis across brains and organoids. Cell Rep Methods. 120. Barroso M, Monaghan MG, Niesner R, Dmitriev RI.
2023;3(2):100409. Probing organoid metabolism using fluorescence lifetime
imaging microscopy (FLIM): The next frontier of drug
doi: 10.1016/j.crmeth.2023.100409
discovery and disease understanding. Adv Drug Deliv Rev.
110. Grandi FC, Modi H, Kampman L, Corces MR. Chromatin 2023;201:115081.
accessibility profiling by ATAC-seq. Nat Protoc. doi: 10.1016/j.addr.2023.115081
2022;17(6):1518-1552.
121. Yoo I, Ahn I, Lee J, Lee N. Extracellular flux assay (Seahorse
doi: 10.1038/s41596-022-00692-9
assay): Diverse applications in metabolic research across
111. Saelens W, Pushkarev O, Deplancke B. ChromatinHD biological disciplines. Mol Cells. 2024;47(8):100095.
connects single-cell DNA accessibility and conformation to
gene expression through scale-adaptive machine learning. doi: 10.1016/j.mocell.2024.100095
Nat Commun. 2025;16(1):317. 122. Little AC, Kovalenko I, Goo LE, et al. High-content
Volume 1 Issue 3 (2025) 24 doi: 10.36922/OR025100010

