Page 50 - OR-1-3
P. 50

100.  Lu J, Sheng Y, Qian W, Pan M, Zhao X, Ge Q. scRNA-seq      doi: 10.1038/s41467-024-55447-9
                 data analysis method to improve analysis performance. IET   112.  Cunnane SC,  Trushina E, Morland C,  et al. Brain
                 Nanobiotechnol. 2023;17(3):246-256.
                                                                  energy rescue: an emerging therapeutic concept for
                 doi: 10.1049/nbt2.12115                          neurodegenerative disorders of ageing.  Nat  Rev  Drug
                                                                  Discov. 2020;19(9):609-633.
            101.  Guo L, Li C, Gong W. Toward reproducible tumor organoid
                 culture: Focusing on primary liver cancer. Front Immunol.      doi: 10.1038/s41573-020-0072-x
                 2024;15:1290504.
                                                              113.  Clemente-Suarez VJ, Beltran-Velasco AI, Redondo-Florez L,
                 doi: 10.3389/fimmu.2024.1290504                  Martin-Rodriguez  A,  Yanez-Sepulveda  R,  Tornero-Aguilera JF.
            102.  Corsini NS, Knoblich JA. Human organoids: New strategies   Neuro-vulnerability in energy metabolism regulation: A
                 and methods for analyzing human development and disease.   comprehensive narrative review. Nutrients. 2023;15(14):3106.
                 Cell. 2022;185(15):2756-2769.                    doi: 10.3390/nu15143106
                 doi: 10.1016/j.cell.2022.06.051              114.  Song Y, Lu S, Gao F, Wei T, Ma W. The application of organoid
            103.  Piwecka  M,  Rajewsky  N,  Rybak-Wolf  A.  Single-cell  and   models in research into metabolic diseases. Diabetes Obes
                 spatial transcriptomics: Deciphering brain complexity in   Metab. 2024;26(3):809-819.
                 health and disease. Nat Rev Neurol. 2023;19(6):346-362.     doi: 10.1111/dom.15390
                 doi: 10.1038/s41582-023-00809-y              115.  Hendriks D, Artegiani B, Margaritis T, Zoutendijk I,
            104.  Potter  SS. Single-cell  RNA sequencing  for the study  of   Chuva de Sousa Lopes S, Clevers H. Mapping of mitogen and
                 development,  physiology  and  disease.  Nat Rev Nephrol.   metabolic sensitivity in organoids defines requirements for
                 2018;14(8):479-492.                              human hepatocyte growth. Nat Commun. 2024;15(1):4034.
                 doi: 10.1038/s41581-018-0021-7                   doi: 10.1038/s41467-024-48550-4
            105.  Fang S, Chen B, Zhang Y, et al. Computational approaches   116.  Kimura M, Iguchi T, Iwasawa K, et al. En masse organoid
                 and challenges in spatial transcriptomics.  Genomics   phenotyping  informs  metabolic-associated  genetic
                 Proteomics Bioinformatics. 2023;21(1):24-47.     susceptibility to NASH. Cell. 2022;185(22):4216-4232.e16.
                 doi: 10.1016/j.gpb.2022.10.001                   doi: 10.1016/j.cell.2022.09.031
            106.  Lahnemann D, Koster J, Szczurek E,  et  al. Eleven grand   117.  Min X, Zhao Y, Yu M, et al. Spatially resolved metabolomics:
                 challenges in single-cell data science.  Genome Biol.   From  metabolite  mapping to  function visualising.  Clin
                 2020;21(1):31.                                   Transl Med. 2024;14(11):e70031.
                 doi: 10.1186/s13059-020-1926-6                   doi: 10.1002/ctm2.70031
            107.  Flores JE, Claborne DM, Weller ZD, Webb-Robertson BM,   118.  Lin A, Sved Skottvoll F, Rayner S,  et al. 3D cell culture
                 Waters KM, Bramer LM. Missing data in multi-omics   models and organ-on-a-chip: Meet separation science and
                 integration: Recent advances through artificial intelligence.   mass spectrometry. Electrophoresis. 2020;41(1-2):56-64.
                 Front Artif Intell. 2023;6:1098308.              doi: 10.1002/elps.201900170
                 doi: 10.3389/frai.2023.1098308               119.  Okkelman IA, Neto N, Papkovsky DB, Monaghan MG,
            108.  Luo Y, Zhao C, Chen F. Multiomics research: Principles and   Dmitriev RI. A deeper understanding of intestinal organoid
                 challenges in integrated analysis. Biodes Res. 2024;6:0059.  metabolism revealed by combining fluorescence lifetime
                                                                  imaging microscopy (FLIM) and extracellular flux analyses.
                 doi: 10.34133/bdr.0059
                                                                  Redox Biol. 2020;30:101420.
            109.  He C, Kalafut NC, Sandoval SO, et al. BOMA, a machine-     doi: 10.1016/j.redox.2019.101420
                 learning framework for comparative gene expression
                 analysis across brains and organoids.  Cell Rep Methods.   120.  Barroso M, Monaghan MG, Niesner R, Dmitriev RI.
                 2023;3(2):100409.                                Probing organoid metabolism using fluorescence lifetime
                                                                  imaging microscopy (FLIM): The next frontier of drug
                 doi: 10.1016/j.crmeth.2023.100409
                                                                  discovery and disease understanding. Adv Drug Deliv Rev.
            110.  Grandi FC, Modi H, Kampman L, Corces MR. Chromatin   2023;201:115081.
                 accessibility profiling by ATAC-seq.  Nat  Protoc.      doi: 10.1016/j.addr.2023.115081
                 2022;17(6):1518-1552.
                                                              121.  Yoo I, Ahn I, Lee J, Lee N. Extracellular flux assay (Seahorse
                 doi: 10.1038/s41596-022-00692-9
                                                                  assay): Diverse applications in metabolic research across
            111.  Saelens W, Pushkarev O, Deplancke B. ChromatinHD   biological disciplines. Mol Cells. 2024;47(8):100095.
                 connects single-cell DNA accessibility and conformation to
                 gene expression through scale-adaptive machine learning.      doi: 10.1016/j.mocell.2024.100095
                 Nat Commun. 2025;16(1):317.                  122.  Little AC,  Kovalenko I, Goo  LE,  et al. High-content


            Volume 1 Issue 3 (2025)                         24                           doi: 10.36922/OR025100010
   45   46   47   48   49   50   51   52   53   54   55