Page 31 - TD-1-2
P. 31

Tumor Discovery                                                    Prognostic biomarkers in pancreatic cancer



            2.   Liu  Y,  Cheng  L,  Song  X,  et al.,  2022,  A  TP53-associated   13.  Xia T, Wu X, Cao M,  et al., 2019, The RNA m6A
               immune prognostic signature for the prediction of the   methyltransferase METTL3 promotes pancreatic cancer
               overall survival and therapeutic responses in pancreatic   cell proliferation and invasion.  Pathol Res Pract, 215(11):
               cancer. Math Biosci Eng, 19(1): 191–208.           152666.
               https://doi.org/10.3934/mbe.2022010                https://doi.org/10.1016/j.prp.2019.152666
            3.   Pratt HG, Steinberger KJ, Mihalik NE,  et al., 2021,   14.  Tang B, Yang Y, Kang M, et al., 2020, m(6)A demethylase
               Macrophage and neutrophil interactions in the pancreatic   ALKBH5 inhibits pancreatic cancer tumorigenesis by
               tumor microenvironment drive the pathogenesis of   decreasing WIF-1 RNA methylation and mediating Wnt
               pancreatic cancer. Cancers (Basel), 14(1): 194.    signaling. Mol Cancer, 19(1): 3.
               https://doi.org/10.3390/cancers14010194            https://doi.org/10.1186/s12943-019-1128-6
            4.   Luu TT, 2021, Review of immunohistochemistry biomarkers   15.  He Y, Hu H, Wang Y,  et al., 2018, ALKBH5 inhibits
               in pancreatic cancer diagnosis. Front Oncol, 11: 799025.  pancreatic cancer motility by decreasing long non-coding
                                                                  RNA KCNK15-AS1 methylation.  Cell Physiol Biochem,
                https://doi.org/10.3389/fonc.2021.799025          48(2): 838–846.
            5.   Yang Y, Hsu PJ, Chen YS, et al., 2018, Dynamic transcriptomic      https://doi.org/10.1159/000491915
               m6A decoration: Writers, erasers, readers and functions in
               RNA metabolism. Cell Res, 28(6): 616–624.       16.  Tu Z, Wu L, Wang P, et al., 2020, N6-Methylandenosine-
                                                                  related lncRNAs are potential biomarkers for predicting the
               https://doi.org/10.1038/s41422-018-0040-8          overall survival of lower-grade glioma patients. Front Cell
            6.   Choe J, Lin S, Zhang W, et al., 2018, mRNA circularization   Dev Biol, 8: 642.
               by METTL3-eIF3h enhances translation and promotes      https://doi.org/10.3389/fcell.2020.00642
               oncogenesis. Nature, 561(7724): 556–560.
                                                               17.  Cho SH, Ha M, Cho YH, et al., 2018, ALKBH5 gene is a
               https://doi.org/10.1038/s41586-018-0538-8          novel biomarker that predicts the prognosis of pancreatic
            7.   Roundtree  IA,  Luo  GZ,  Zhang  Z,  et al.,  2017,  YTHDC1   cancer: A retrospective multicohort study. Ann Hepatobiliary
               mediates nuclear export of N(6)-methyladenosine    Pancreat Surg, 22(4): 305–309.
               methylated mRNAs. Elife, 6: e31311.                https://doi.org/10.14701/ahbps.2018.22.4.305
            8.   Shi H, Wang X, Lu Z,  et al., 2017, YTHDF3 facilitates   18.  Li  F,  Zhang  P,  Khalaf  OI,  2021,  The
               translation and decay of N(6)-methyladenosine-modified   N6-methyladenosine-  (m6A-) associated genes act as
               RNA. Cell Res, 27(3): 315–328.                     strong key biomarkers for the prognosis of pancreatic
               https://doi.org/10.1038/cr.2017.15                 adenocarcinoma.   Comput  Math  Methods  Med,
                                                                  2021: 8715823.
            9.   Zhou M, Zhao H, Xu W, et al., 2017, Discovery and validation
               of immune-associated long non-coding RNA biomarkers   19.  Wei R, Qi G, Zeng Z, et al., 2021, IMUP and GPRC5A: Two
               associated with clinically molecular subtype and prognosis   newly identified risk score indicators in pancreatic ductal
               in diffuse large B cell lymphoma. Mol Cancer, 16(1): 16.  adenocarcinoma. Cancer Cell Int, 21(1): 620.
                https://doi.org/10.1186/s12943-017-0580-4         https://doi.org/10.1186/s12935-021-02324-w
            10.  Zhou M, Xu W, Yue X, et al., 2016, Relapse-related long non-  20.  Ponting CP, Oliver PL, Reik W, 2009, Evolution and
               coding RNA signature to improve prognosis prediction of   functions of long noncoding RNAs. Cell, 136(4): 629–641.
               lung adenocarcinoma. Oncotarget, 7(20): 29720–29738.      https://doi.org/10.1016/j.cell.2009.02.006

               https://doi.org/10.18632/oncotarget.8825        21.  Loewen G, Jayawickramarajah J, Zhuo Y,  et al., 2014,
            11.  Zhou KI, Parisien M, Dai Q,  et  al., 2016, N(6)-  Functions of  lncRNA  HOTAIR  in  lung  cancer.  J  Hematol
               methyladenosine modification in a long noncoding RNA   Oncol, 7:90.
               hairpin predisposes its conformation to protein binding.      https://doi.org/10.1186/s13045-014-0090-4
               J Mol Biol, 428(5): 822–833.
                                                               22.  Ghafouri-Fard S, Shoorei H, Branicki W,  et al., 2020,
               https://doi.org/10.1016/j.jmb.2015.08.021          Non-coding RNA profile in lung cancer.  Exp Mol Pathol,
            12.  Cai H, An Y, Chen X, et al., 2016, Epigenetic inhibition of   114: 104411.
               miR-663b by long non-coding RNA HOTAIR promotes      https://doi.org/10.1016/j.yexmp.2020.104411
               pancreatic cancer cell proliferation via up-regulation of   23.  Dousset  L,  Poizeau  F,  Robert  C,  et al.,  2021,  Positive
               insulin-like growth factor 2.  Oncotarget, 7(52): 86857–  association  between  location  of  melanoma,  ultraviolet
               86870.
                                                                  signature, tumor mutational burden, and response to
               https://doi.org/10.18632/oncotarget.13490          anti-PD-1 therapy. JCO Precis Oncol, 5: PO.21.00084.


            Volume 1 Issue 2 (2022)                         14                      https://doi.org/10.36922/td.v1i2.165
   26   27   28   29   30   31   32   33   34   35   36