Page 59 - TD-3-4
P. 59

Tumor Discovery                                                                PPAR agonist and cancer



               doi: 10.1158/1535-7163.MCT-06-0763                 crosstalk through nanocarrier systems.  Stem Cell Rev
                                                                  Rep. 2022;18(7):2209-2233.
            109. Tran TT, Uhl M, Ma JY, et al. Inhibiting TGF-β signaling
               restores  immune  surveillance in  the  SMA-560 glioma      doi: 10.1007/s12015-022-10426-9
               model. Neuro Oncol. 2007;9(3):259-270.
                                                               119. Min JY, Kim DH. Stearoyl-CoA desaturase 1 as a therapeutic
               doi: 10.1215/15228517-2007-010                     biomarker: Focusing on cancer stem cells.  Int J Mol Sci.
                                                                  2023;24(10):8951.
            110.  Papi A, De Carolis S, Bertoni S, et al. PPARγ and RXR ligands
               disrupt  the  inflammatory  cross‐talk  in  the  hypoxic  breast      doi: 10.3390/ijms24108951
               cancer stem cells niche. J Cell Physiol. 2014;229(11):1595-1606.
                                                               120.  Ma XL, Sun YF, Wang BL, et al. Sphere-forming culture enriches
               doi: 10.1002/jcp.24601                             liver cancer stem cells and reveals Stearoyl-CoA desaturase 1 as
            111. Rovito D, Gionfriddo G, Barone I, et al. Ligand-activated   a potential therapeutic target. BMC Cancer. 2019;19:1-2.
               PPARγ downregulates CXCR4 gene expression through a      doi: 10.1186/s12885-019-5963-z
               novel identified PPAR response element and inhibits breast
               cancer progression. Oncotarget. 2016;7(40):65109.  121. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic:
                                                                  Glutamine metabolism to cancer therapy. Nat Rev Cancer.
               doi: 10.18632/oncotarget.11371                     2016;16(10):619-634.
            112. Wang N, Wang S, Wang X,  et al. Research trends in      doi: 10.1038/nrc.2016.114
               pharmacological  modulation  of  tumor‐associated
               macrophages. Clin Transl Med. 2021;11(1):e288.  122. Hay N. Reprogramming glucose metabolism in cancer:
                                                                  Can it be exploited for cancer therapy?  Nat Rev Cancer.
               doi: 10.1002/ctm2.288                              2016;16(10):635-649.
            113. Penas F, Mirkin GA, Vera M, et al. Treatment in vitro with      doi: 10.1038/nrc.2016.77
               PPARα and PPARγ ligands drives M1-to-M2 polarization of
               macrophages from T. cruzi-infected mice. Biochim Biophys   123. Luo  X,  Cheng  C,  Tan  Z,  et al.  Emerging  roles  of  lipid
               Acta. 2015;1852(5):893-904.                        metabolism in cancer metastasis. Mol Cancer. 2017;16(1):76.
               doi: 10.1016/j.bbadis.2014.12.019                  doi: 10.1186/s12943-017-0646-3
            114. Souza-Moreira L, Soares VC, Dias SD, Bozza PT. Adipose-  124. Vamecq J, Colet JM, Vanden Eynde JJ, Briand G, Porchet N,
               derived  mesenchymal  stromal  cells  modulate  lipid   Rocchi  S.  PPARs:  interference  with  Warburg’  effect  and
               metabolism and lipid droplet biogenesis via AKT/mTOR–  clinical anticancer trials. PPAR Res. 2012;2012(1):304760.
               PPARγ signalling in macrophages. Sci Rep. 2019;9(1):20304.     doi: 10.1155/2012/304760
               doi: 10.1038/s41598-019-56835-8                 125. Antonosante A, d’Angelo M, Castelli V, et al. The involvement
            115. Gionfriddo  G, Plastina P,  Augimeri  G,  et al. Modulating   of PPARs in the peculiar energetic metabolism of tumor
               tumor-associated macrophage polarization by synthetic and   cells. Int J Mol Sci. 2018;19(7):1907.
               natural PPARγ ligands as a potential target in breast cancer.      doi: 10.3390/ijms19071907
               Cells. 2020;9(1):174.
                                                               126. Shi Q, Zeng Y, Xue C, Chu Q, Yuan X, Li L. Development
               doi: 10.3390/cells9010174                          of a promising PPAR signaling pathway-related prognostic
            116. Christofides A, Konstantinidou E, Jani C, Boussiotis VA. The   prediction model for hepatocellular carcinoma.  Sci
               role of peroxisome proliferator-activated receptors (PPAR)   Rep. 2024 Feb 28;14(1):4926.
               in immune responses. Metabolism. 2021;114:154338.     doi: 10.1038/s41598-024-55086-6
               doi: 10.1016/j.metabol.2020.154338              127. Zhang Y, Li X, Zhang J, et al. Development and validation
            117. Sun J, Yu L, Qu X, Huang T. The role of peroxisome proliferator-  of the promising PPAR signaling pathway‐based prognostic
               activated receptors in the tumor microenvironment, tumor   prediction model in uterine cervical cancer.  PPAR Res.
               cell metabolism, and anticancer therapy. Front Pharmacol.   2023;2023(1):4962460.
               2023;14:1184794.                                   doi: 10.1155/2023/4962460
               doi: 10.3389/fphar.2023.1184794
                                                               128. Wang H, Yang Y, Luo Q, et al. The PPAR signaling pathway
            118. Nayak A, Warrier NM, Kumar P. Cancer stem cells and   as a potential biomarker for the diagnosis of breast cancer.
               the tumor microenvironment: Targeting the critical   Int J Clin Exp Med. 2019;12(6):7327-7336.








            Volume 3 Issue 4 (2024)                         16                                doi: 10.36922/td.4003
   54   55   56   57   58   59   60   61   62   63   64