Page 58 - TD-3-4
P. 58

Tumor Discovery                                                                PPAR agonist and cancer



               agonist of PPAR-γ, reverses doxorubicin-resistance in an      doi: 10.1007/s10637-013-0056-3
               osteosarcoma patient-derived orthotopic xenograft model   99.  Hau P, Kunz-Schughart L, Bogdahn U,  et al. Low-dose
               by downregulating P-glycoprotein expression.  Biomed   chemotherapy in combination with COX-2 inhibitors and
               Pharmacother. 2019;118:109356.
                                                                  PPAR-gamma agonists in recurrent high-grade gliomas-a
               doi: 10.1016/j.biopha.2019.109356                  phase II study. Oncology. 2008;73(1-2):21-25.
            90.  To KKW, Tomlinson B. Targeting the ABCG2-overexpressing      doi: 10.1159/000120028
               multidrug resistant (MDR) cancer cells by PPAR-γ agonists.   100. Vogt T, Hafner C, Bross K, et al. Antiangiogenetic therapy
               Br J Pharmacol. 2013;170(5):1137-1151.
                                                                  with pioglitazone, rofecoxib, and metronomic trofosfamide
               doi: 10.1111/bph.12367                             in patients with advanced malignant vascular tumors.
                                                                  Cancer. 2003;98(10):2251-2256.
            91.  Zhang H, Jing X, Wu X,  et al. Suppression of multidrug
               resistance  by  rosiglitazone  treatment  in human  ovarian      doi: 10.1002/cncr.11775
               cancer cells through downregulation of FZD1 and MDR1   101. Reichle A, Bross K, Vogt T, et al. Pioglitazone and rofecoxib
               genes. Anticancer Drugs. 2015;26(7):706-715.
                                                                  combined with angiostatically scheduled trofosfamide in
               doi: 10.1097/CAD.0000000000000236                  the treatment of far‐advanced melanoma and soft tissue
                                                                  sarcoma. Cancer. 2004;101(10):2247-2256.
            92.  Bräutigam K, Biernath-Wüpping J, Bauerschlag DO, et  al.
               Combined treatment with TRAIL and PPAR-γ ligands      doi: 10.1002/cncr.20574
               overcomes chemoresistance of ovarian cancer cell lines.   102. Bahrambeigi S, Molaparast M, Sohrabi  F,  et al. Targeting
               J Cancer Res Clin Oncol. 2011;137(5):875-886.
                                                                  PPAR ligands as possible approaches for metabolic
               doi: 10.1007/s00432-010-0952-2                     reprogramming of T cells in cancer immunotherapy.
                                                                  Immunol Lett. 2020;220:32-37.
            93.  Vallée A, Lecarpentier Y, Vallée JN. Targeting the canonical
               WNT/β-catenin pathway in cancer treatment using non-     doi: 10.1016/j.imlet.2020.01.006
               steroidal anti-inflammatory drugs. Cells. 2019;8(7):726.
                                                               103. Odorizzi PM, Pauken KE, Paley MA, Sharpe A, Wherry EJ.
               doi: 10.3390/cells8070726                          Genetic  absence  of  PD-1 promotes accumulation  of
                                                                  terminally differentiated exhausted CD8+ T cells. J Exp Med.
            94.  Chen L, Bush CR, Necela BM, et al. RS5444, a novel PPARγ
               agonist, regulates  aspects of  the differentiated  phenotype   2015;212(7):1125.
               in nontransformed intestinal epithelial cells.  Mol Cell      doi: 10.1084/jem.20142237
               Endocrinol. 2006;251:17-32.
                                                               104. Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade
               doi: 10.1016/j.mce.2006.02.006                     induces responses by inhibiting adaptive immune resistance.
                                                                  Nature. 2014;515(7528):568-571.
            95.  Smallridge RC, Copland JA, Brose MS, et al. Efatutazone,
               an oral PPAR-γ agonist, in combination with paclitaxel in      doi: 10.1016/j.ejca.2023.03.040
               anaplastic thyroid cancer: Results of a multicenter phase 1   105. Zhang Y, Kurupati R, Liu L, et al. Enhancing CD8+ T cell
               trial. J Clin Endocrinol Metab. 2013;98(6):2392-2400.
                                                                  fatty acid catabolism within a metabolically challenging
               doi: 10.1210/jc.2013-1106                          tumor microenvironment increases the efficacy of melanoma
                                                                  immunotherapy. Cancer Cell. 2017;32(3):377-391.
            96.  Marlow LA, Reynolds LA, Cleland AS, et al. Reactivation
               of suppressed RhoB is a critical step for the inhibition      doi: 10.1016/j.ccell.2017.08.004
               of  anaplastic thyroid cancer  growth.  Cancer  Res.   106. Chowdhury PS, Chamoto K, Kumar A, Honjo T. PPAR-
               2009;69(4):1536-1544.
                                                                  induced fatty acid oxidation in T cells increases the number
               doi: 10.1158/0008-5472.CAN-08-3718                 of tumor-reactive CD8+ T cells and facilitates anti–PD-1
                                                                  therapy. Cancer Immunol Res. 2018;6(11):1375-1387.
            97.  Pishvaian MJ, Marshall JL, Wagner AJ, et al. A phase 1 study
               of efatutazone, an oral peroxisome proliferator‐activated      doi: 10.1158/2326-6066.CIR-18-0095
               receptor gamma agonist, administered to patients with   107. Han J, Alvarez-Breckenridge CA, Wang QE, Yu J. TGF-β
               advanced malignancies. Cancer. 2012;118(21):5403-5413.
                                                                  signaling and its targeting for glioma treatment. Am J Cancer
               doi: 10.1002/cncr.27526                            Res. 2015;5(3):945.
            98.  Komatsu Y, Yoshino T, Yamazaki K, et al. Phase 1 study of   108. Coras R, Holsken A, Seufert S,  et al. The peroxisome
               efatutazone, a novel oral peroxisome proliferator-activated   proliferator-activated receptor-γ agonist troglitazone
               receptor gamma agonist, in combination with FOLFIRI as   inhibits transforming growth factor-β–mediated glioma
               second-line therapy in patients with metastatic colorectal   cell migration and brain invasion.  Mol Cancer Ther.
               cancer. Invest New Drugs. 2014;32:473-480.         2007;6(6):1745-1754.


            Volume 3 Issue 4 (2024)                         15                                doi: 10.36922/td.4003
   53   54   55   56   57   58   59   60   61   62   63