Page 96 - TD-3-4
P. 96

Tumor Discovery                                                  RNA-protein complexes deregulated in cancer



               doi: 10.1038/ja.2011.35                            doi: 10.1089/hum.2018.048
            235. Lu X, Ning Z, Li Z, Cao H, Wang X. Development of   246. Gao J, Hou B, Zhu Q,  et  al. Engineered bioorthogonal
               chidamide for peripheral T-cell lymphoma, the first   POLY-PROTAC nanoparticles for tumor-specific protein
               orphan drug approved in China. Intractable Rare Dis Res.   degradation and precise cancer therapy. Nat Commun.
               2016;5:185-191.                                    2022;13(1):4318.
               doi: 10.5582/irdr.2016.01024                       doi: 10.1038/s41467-022-32050-4
            236. Garnock-Jones KP. Panobinostat: First global approval.   247. Wang C, Zhang Y, Chen W, Wu Y, Xing D. New-generation
               Drugs. 2015;75:695-704. Erratum in Drugs. 2015;75:929.  advanced PROTACs as potential therapeutic agents in
                                                                  cancer therapy. Mol Cancer. 2024;23(1):110.
               doi: 10.1007/s40265-015-0388-8
                                                                  doi: 10.1186/s12943-024-02024-9
            237. Ghasemi S. Cancer’s epigenetic drugs: Where they are in the
               cancer medicines? Pharmacogen J. 2020;20:367-379.  248. Zhao  LP, Rao XN,  Zheng RR,  et al.  Carrier-free nano-
                                                                  PROTACs to amplify photodynamic therapy induced
               doi: 10.1038/s41397-019-0138-5                     DNA damage through BRD4 degradation.  Nano  Lett.
            238. Zhou Z, Li HQ, Liu F. DNA methyltransferase inhibitors   2023;23(13):6193-6201.
               and their therapeutic potential.  Curr Top Med Chem.      doi: 10.1021/acs.nanolett.3c01812
               2018;18:2448-2457.
                                                               249. Alabi S, Jaime-Figueroa S, Yao Z,  et al. Mutant-selective
               doi: 10.2174/1568026619666181120150122             degradation by BRAF-targeting PROTACs.  Nat  Commun.
            239. Kantarjian HM, Roboz GJ, Kropf PL, et al. Guadecitabine   2021;12:920.
               (SGI-110) in treatment-naive patients with acute myeloid      doi: 10.1038/s41467-021-21159-7
               leukemia: Phase 2 results from a multicenter, randomized,
               phase 1/2 trial. Lancet Oncol. 2017;18:1317-1326.  250. Haj-Yahia S, Nandi A, Benhamou RI. Targeted degradation
                                                                  of structured RNAs via ribonuclease-targeting chimeras
               doi: 10.1016/S1470-2045(17)30576-4                 (RiboTacs). Expert Opin Drug Discov. 2023;18(8):929-942.
            240. Poltronieri P, Joardar S. Unravelling the interplay between      doi: 10.1080/17460441.2023.2224960
               biomolecular condensates and RNA in cancer and diseases.
               J Biol Regul Homeost Agents, 2024;38(8):5627-5652.   251. Tong Y, Lee Y, Liu X,  et al. Programing inactive RNA-
                                                                  binding small molecules into bioactive degraders. Nature.
               doi: 10.23812/j.biol.regul.homeost.agents.20243808.453  2023;618(7963):169-179.
            241. Chen XH, Guo KX, Li J, Xu SH, Zhu H, Yan GR. Regulations      doi: 10.1038/s41586-023-06091-8
               of m6A and other RNA modifications and their roles in   252. Ly HH, Daniel S, Soriano SKV, Kis Z, Blakney AK.
               cancer. Front Med. 2024;18(4):622-648.
                                                                  Optimization of lipid nanoparticles for saRNA expression
               doi: 10.1007/s11684-024-1064-8                     and cellular activation using a design-of-experiment
                                                                  approach. Mol Pharmacol. 2022;19(6):1892-1905.
            242. Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale
               CRISPR-mediated control of gene repression and activation.      doi: 10.1021/acs.molpharmaceut.2c00032
               Cell. 2014;159:647-661.                         253. Kovachka S, Panosetti M, Grimaldi B, Azoulay S,
               doi: 10.1016/j.cell.2014.09.029                    Di  Giorgio  A, Duca M. Small-molecule approaches to
                                                                  targeting RNA. Nat Rev Chem. 2024;8:120-135.
            243. Shamloo S, Kloetgen A, Petroulia S, et al. Integrative CRISPR
               activation and small molecule inhibitor screening for      doi: 10.1038/s41570-023-00569-9
               lncRNA mediating BRAF inhibitor resistance in melanoma.   254. Hargrove  AE.  Small  molecule-RNA  targeting:  Starting
               Biomedicines. 2023;11:2054.                        with the fundamentals.  Chem  Commun (Camb).
               doi: 10.3390/biomedicines11072054                  2020;56:14744-14756.
            244. Liu C, Tang H, Hu N,  et al. Methylomics and cancer:      doi: 10.1039/d0cc06796b
               The current state of methylation profiling and marker   255. Berdnikova DV. Photoswitches for controllable RNA
               development for clinical care. Cancer Cell Int. 2023;23:242.  binding: A future approach in RNA-targeting therapy. Chem
               doi: 10.1186/s12935-023-03074-7                    Commun (Camb). 2021;57:10819-10826.
            245. Zhen S, Lu J, Chen W, Zhao L, Li X. Synergistic antitumor      doi: 10.1039/d1cc04241f
               effect on bladder cancer by rational combination of   256. Chen B, Dragomir MP, Fabris L,  et al. The long
               programed cell  death  1 blockade and  CRISPR-Cas9-  noncoding RNA CCAT2 induces chromosomal instability
               mediated long non-coding RNA urothelial carcinoma   through  BOP1-AURKB  signaling.  Gastroenterology.
               associated 1 knockout. Hum Gene Ther. 2018;29:1352-1363.  2020;159:2146-2162.


            Volume 3 Issue 4 (2024)                         37                                doi: 10.36922/td.4657
   91   92   93   94   95   96   97   98   99   100   101