Page 96 - TD-3-4
P. 96
Tumor Discovery RNA-protein complexes deregulated in cancer
doi: 10.1038/ja.2011.35 doi: 10.1089/hum.2018.048
235. Lu X, Ning Z, Li Z, Cao H, Wang X. Development of 246. Gao J, Hou B, Zhu Q, et al. Engineered bioorthogonal
chidamide for peripheral T-cell lymphoma, the first POLY-PROTAC nanoparticles for tumor-specific protein
orphan drug approved in China. Intractable Rare Dis Res. degradation and precise cancer therapy. Nat Commun.
2016;5:185-191. 2022;13(1):4318.
doi: 10.5582/irdr.2016.01024 doi: 10.1038/s41467-022-32050-4
236. Garnock-Jones KP. Panobinostat: First global approval. 247. Wang C, Zhang Y, Chen W, Wu Y, Xing D. New-generation
Drugs. 2015;75:695-704. Erratum in Drugs. 2015;75:929. advanced PROTACs as potential therapeutic agents in
cancer therapy. Mol Cancer. 2024;23(1):110.
doi: 10.1007/s40265-015-0388-8
doi: 10.1186/s12943-024-02024-9
237. Ghasemi S. Cancer’s epigenetic drugs: Where they are in the
cancer medicines? Pharmacogen J. 2020;20:367-379. 248. Zhao LP, Rao XN, Zheng RR, et al. Carrier-free nano-
PROTACs to amplify photodynamic therapy induced
doi: 10.1038/s41397-019-0138-5 DNA damage through BRD4 degradation. Nano Lett.
238. Zhou Z, Li HQ, Liu F. DNA methyltransferase inhibitors 2023;23(13):6193-6201.
and their therapeutic potential. Curr Top Med Chem. doi: 10.1021/acs.nanolett.3c01812
2018;18:2448-2457.
249. Alabi S, Jaime-Figueroa S, Yao Z, et al. Mutant-selective
doi: 10.2174/1568026619666181120150122 degradation by BRAF-targeting PROTACs. Nat Commun.
239. Kantarjian HM, Roboz GJ, Kropf PL, et al. Guadecitabine 2021;12:920.
(SGI-110) in treatment-naive patients with acute myeloid doi: 10.1038/s41467-021-21159-7
leukemia: Phase 2 results from a multicenter, randomized,
phase 1/2 trial. Lancet Oncol. 2017;18:1317-1326. 250. Haj-Yahia S, Nandi A, Benhamou RI. Targeted degradation
of structured RNAs via ribonuclease-targeting chimeras
doi: 10.1016/S1470-2045(17)30576-4 (RiboTacs). Expert Opin Drug Discov. 2023;18(8):929-942.
240. Poltronieri P, Joardar S. Unravelling the interplay between doi: 10.1080/17460441.2023.2224960
biomolecular condensates and RNA in cancer and diseases.
J Biol Regul Homeost Agents, 2024;38(8):5627-5652. 251. Tong Y, Lee Y, Liu X, et al. Programing inactive RNA-
binding small molecules into bioactive degraders. Nature.
doi: 10.23812/j.biol.regul.homeost.agents.20243808.453 2023;618(7963):169-179.
241. Chen XH, Guo KX, Li J, Xu SH, Zhu H, Yan GR. Regulations doi: 10.1038/s41586-023-06091-8
of m6A and other RNA modifications and their roles in 252. Ly HH, Daniel S, Soriano SKV, Kis Z, Blakney AK.
cancer. Front Med. 2024;18(4):622-648.
Optimization of lipid nanoparticles for saRNA expression
doi: 10.1007/s11684-024-1064-8 and cellular activation using a design-of-experiment
approach. Mol Pharmacol. 2022;19(6):1892-1905.
242. Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale
CRISPR-mediated control of gene repression and activation. doi: 10.1021/acs.molpharmaceut.2c00032
Cell. 2014;159:647-661. 253. Kovachka S, Panosetti M, Grimaldi B, Azoulay S,
doi: 10.1016/j.cell.2014.09.029 Di Giorgio A, Duca M. Small-molecule approaches to
targeting RNA. Nat Rev Chem. 2024;8:120-135.
243. Shamloo S, Kloetgen A, Petroulia S, et al. Integrative CRISPR
activation and small molecule inhibitor screening for doi: 10.1038/s41570-023-00569-9
lncRNA mediating BRAF inhibitor resistance in melanoma. 254. Hargrove AE. Small molecule-RNA targeting: Starting
Biomedicines. 2023;11:2054. with the fundamentals. Chem Commun (Camb).
doi: 10.3390/biomedicines11072054 2020;56:14744-14756.
244. Liu C, Tang H, Hu N, et al. Methylomics and cancer: doi: 10.1039/d0cc06796b
The current state of methylation profiling and marker 255. Berdnikova DV. Photoswitches for controllable RNA
development for clinical care. Cancer Cell Int. 2023;23:242. binding: A future approach in RNA-targeting therapy. Chem
doi: 10.1186/s12935-023-03074-7 Commun (Camb). 2021;57:10819-10826.
245. Zhen S, Lu J, Chen W, Zhao L, Li X. Synergistic antitumor doi: 10.1039/d1cc04241f
effect on bladder cancer by rational combination of 256. Chen B, Dragomir MP, Fabris L, et al. The long
programed cell death 1 blockade and CRISPR-Cas9- noncoding RNA CCAT2 induces chromosomal instability
mediated long non-coding RNA urothelial carcinoma through BOP1-AURKB signaling. Gastroenterology.
associated 1 knockout. Hum Gene Ther. 2018;29:1352-1363. 2020;159:2146-2162.
Volume 3 Issue 4 (2024) 37 doi: 10.36922/td.4657

