Page 74 - TD-4-3
P. 74

Tumor Discovery                                               Highly accurate gene panels for cancer screening



            Further disclosure                                    enrichment. Genome Med. 2021;13(1):68.

            Initial versions of the paper have been deposited in the      doi: 10.1186/s13073-021-00864-4
            biorXiv preprint server (doi: 10.1101/2022.07.25.501449,   12.  Le Priol C, Azencott  CA, Gidrol X. Detection  of genes
            10.1101/2024.07.25.604730).                           with differential expression dispersion unravels the role
                                                                  of autophagy in cancer progression.  PLoS Comput Biol.
            References                                            2023;19(3):e1010342.

            1.   Collins FS, Morgan M, Patrinos A. The human genome      doi: 10.1371/journal.pcbi.1010342
               project:  Lessons  from  Large-scale  biology.  Science.   13.  Li  H,  Khang  TF.  clrDV:  A  differential  variability  test  for
               2003;300(5617):286-290.
                                                                  RNA-Seq data based on the skew-normal distribution. PeerJ.
               doi: 10.1126/science.1084564                       2023;11:e16126.
            2.   Chu Y, Corey DR. RNA sequencing: Platform selection,      doi: 10.7717/peerj.16126
               experimental design, and data interpretation. Nucleic Acid
               Ther. 2012;22(4):271-274.                       14.  Roberts AGK, Catchpoole DR, Kennedy PJ. Identification
                                                                  of differentially distributed gene expression and distinct sets
               doi: 10.1089/nat.2012.0367                         of cancer-related genes identified by changes in mean and
            3.   Haque A, Engel J, Teichmann SA, Lönnberg T. A practical   variability. NAR Genom Bioinform. 2022;4(1):lqab124.
               guide to single-cell RNA-sequencing for biomedical research      doi: 10.1093/nargab/lqab124
               and clinical applications. Genome Med. 2017;9(1):75.
                                                               15.  Andreani TS, Itoh TQ, Yildirim E, Hwangbo DS,
               doi: 10.1186/s13073-017-0467-4                     Allada R. Genetics of circadian rhythms.  Sleep  Med  Clin.
            4.   The Cancer Genome Atlas Research Network, Weinstein   2015;10(4):413-421.
               J, Collisson E,  et al. The cancer genome atlas pan-cancer      doi: 10.1016/j.jsmc.2015.08.007
               analysis project. Nat Gen. 2013;45(10):1113-1120.
                                                               16.  Gebert J, Motameny S, Faigle U, Forst CV, Schrader R.
               doi: 10.1038/ng.2764                               Identifying genes of gene regulatory networks using formal
            5.   Hutter C, Zenklusen JC. The cancer genome atlas: Creating   concept analysis. J Comput Biol. 2008;15(2):185-194.
               lasting value beyond its data. Cell. 2018;173(2):283-285.     doi: 10.1089/cmb.2007.0107
               doi: 10.1016/j.cell.2018.03.042                 17.  Choi V, Huang Y, Lam V, Potter D, Laubenbacher R, Duca K.
            6.   The Cancer Genome Atlas Research Network. The Cancer   Using formal concept analysis for microarray data
               Genome Atlas. 2006. Available from: https://www.cancer.  comparison. J Bioinform Comput Biol. 2008;6(1):65-75.
               gov/tcga [Last accessed on 2025 Apr 15].           doi: 10.1142/s021972000800328x
            7.   Cheng PF, Dummer R, Levesque MP. Data mining the   18.  Motameny S, Versmold B, Schmutzler R. Formal Concept
               cancer genome atlas in the era of precision cancer medicine.   Analysis  for the Identification  of Combinatorial  Biomarkers
               Swiss Med Wkly. 2015;145:w14183.                   in Breast Cancer. In: Medina R, Obiedkov S, editors.  Formal
               doi: 10.4414/smw.2015.14183                        Concept Analysis. ICFCA 2008. Lecture Notes in Computer
                                                                  Science. Vol. 4933. Berlin, Heidelberg: Springer;  2008. p 229–240.
            8.   Liñares-Blanco, J, Pazos, A, Fernandez-Lozano, C. Machine
               learning analysis of TCGA cancer data. PeerJ Comput Sci.      doi: 10.1007/978-3-540-78137-0_17
               2021;7:e584.                                    19.  Amin II, Kassim SK, Hassanien A, Hefny HA. Formal
               doi: 10.7717/peerj-cs.584                          Concept  Analysis  for  Mining  Hypermethylated  Genes
                                                                  in Breast Cancer Tumor Subtypes. In:  12   International
                                                                                                  th
            9.   Li Q, Dai W, Liu J, Sang Q, Li YX, Li YY. Gene dysregulation   Conference  on  Intelligent  Systems  Design  and  Applications
               analysis builds a mechanistic signature for prognosis and   (ISDA). Kochi, India; 2012. p. 764-769.
               therapeutic benefit in colorectal cancer.  J  Mol Cell Biol.
               2020;12(11):881-893.                               doi: 10.1109/ISDA.2012.6416633
               doi: 10.1093/jmcb/mjaa041                       20.  Kaytoue-Uberall  M, Duplessis  S, Napoli  A.  Using
                                                                  Formal Concept Analysis for the Extraction of Groups of
            10.  Ali HEA, Lung PY, Sholl AB,  et al. Dysregulated gene   Co-expressed Genes. In: Le Thi HA, Bouvry P, Pham Dinh T,
               expression predicts tumor aggressiveness in African-  editors.  Modelling, Computation and Optimization in
               American prostate cancer patients. Sci Rep. 2018;8(1):16335.
                                                                  Information Systems and Management Sciences. MCO 2008.
               doi: 10.1038/s41598-018-34637-8                    Communications in Computer and Information Science.
                                                                  Vol. 14. Berlin, Heidelberg: Springer; 2008.
            11.  Mezlini AM, Das S, Goldenberg A. Finding associations
               in a heterogeneous setting: Statistical test for aberration      doi: 10.1007/978-3-540-87477-5_47


            Volume 4 Issue 3 (2025)                         66                           doi: 10.36922/TD025190035
   69   70   71   72   73   74   75   76   77   78   79