Page 76 - TD-4-3
P. 76
Tumor Discovery Highly accurate gene panels for cancer screening
on Data Mining Proceedings. Maebashi City, Japan; 2002. 2022;24(12):1744.
p. 155-162.
doi: 10.3390/e24121744
doi: 10.1109/ICDM.2002.1183898
53. Gonzalez A, Quintela F, Leon DA, Bringas Vega ML, Valdes-
41. Lai H, Zhang D. Concept lattices of fuzzy contexts: Formal Sosa P. Estimating the number of available states for normal
concept analysis vs. rough set theory. Int J Approx Reason. and tumor tissues in gene expression space. Biophys Rep
2009;50(5):695-707. (NY). 2022;2(2):100053.
doi: 10.1016/j.ijar.2008.12.002 doi: 10.1016/j.bpr.2022.100053
42. Pawlak, Z. Rough sets. Int J Comput Inf Sci. 1982;11(5):341-356. 54. Bradner JE, Hnisz D, Young RA. Transcriptional addiction
in cancer. Cell. 2017;168(4):629-643.
doi: 10.1007/BF01001956
doi: 10.1016/j.cell.2016.12.013
43. Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about
Data. Dordrecht: Springer; 1991. 55. Li Q, Dai W, Liu J, Sang Q, Li YX, Li YY. DysRegSig:
An R package for identifying gene dysregulations and
doi: 10.1007/978-94-011-3534-4
building mechanistic signatures in cancer. Bioinformatics.
44. Jia X, Shang L, Zhou B, Yao Y. Generalized attribute reduct 2021;37(3):429-430.
in rough set theory. Knowl Based Syst. 2016;91:204-218.
doi: 10.1093/bioinformatics/btaa688
doi: 10.1016/j.knosys.2015.05.017
56. Dalman MR, Deeter A, Nimishakavi G, Duan ZH. Fold
45. Zhang W. Attribute reduction theory and approach to change and p-value cutoffs significantly alter microarray
concept lattice. Sci China Ser F Inf Sci. 2005;48(6):713-726. interpretations. BMC Bioinform. 2012;13(Suppl 2):S11.
doi: 10.1360/122004-104 doi: 10.1186/1471-2105-13-S2-S11
46. World Health Organization. Cancer. Available from: https:// 57. Khamas A, Ishikawa T, Shimokawa K, et al. Screening for
www.who.int/news-room/factsheets/detail/cancer [Last epigenetically masked genes in colorectal cancer using
accessed on 2025 April 15]. 5-Aza-2’-deoxycytidine, microarray and gene expression
47. Bengtsson M, Ståhlberg A, Rorsman P, Kubista M. Gene profile. Cancer Genomics Proteomics. 2012;9(2):67-75.
expression profiling in single cells from the pancreatic islets 58. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: Archive
of Langerhans reveals lognormal distribution of mRNA for functional genomics data sets--update. Nucleic Acids Res.
levels. Genome Res. 2005;15(10):1388-1392. 2013;41(D1):D991-D995.
doi: 10.1101/gr.3820805 doi: 10.1093/nar/gks1193
48. Sha Y, Phan JH, Wang MD. Effect of Low-expression Gene 59. Liu J, Zheng ML, Shi PC, Cao YP, Zhang JL, Xie YP. SCARA5
Filtering on Detection of Differentially Expressed Genes in is a novel biomarker in colorectal cancer by comprehensive
RNA-seq Data. In: 37 Annual International Conference of analysis. Clin Lab. 2020;66(7).
th
the IEEE Engineering in Medicine and Biology Society. 2015.
p. 6461. doi: 10.7754/Clin.Lab.2019.191015
60. Xu JY, Zhang C, Wang X, et al. Integrative proteomic
doi: 10.1109/EMBC.2015.7319872
characterization of human lung adenocarcinoma. Cell.
49. Fang Z, Martin J, Wang Z. Statistical methods for identifying 2020;182(1):245-261.e17.
differentially expressed genes in RNA-Seq experiments. Cell
Biosci. 2012;2(1):26. doi: 10.1016/j.cell.2020.05.043
61. Ruiz-Cordero R, Ma J, Khanna A, et al. Simplified molecular
doi: 10.1186/2045-3701-2-26
classification of lung adenocarcinomas based on EGFR,
50. Durães C, Pereira Gomes C, Costa JL, Quagliata L. KRAS, and TP53 mutations. BMC Cancer. 2020;20(1):83.
Demystifying the discussion of sequencing panel size in doi: 10.1186/s12885-020-6579-z
oncology genetic testing. Eur Med J. 2022;7(2):68-77
62. Ren H, Ge DF, Yang ZC, Cheng ZT, Zhao SX, Zhang B.
doi: 10.33590/emj/22C9259
Integrated bioinformatics analysis identifies ALDH18A1
51. Gonzalez A, Leon DA, Perera Y, Perez R. On the as a prognostic hub gene in glutamine metabolism in lung
gene expression landscape of cancer. PLoS One. adenocarcinoma. Discov Oncol. 2025;16(1):1.
2023;18(2):e0277786.
doi: 10.1007/s12672-024-01698-3
doi: 10.1371/journal.pone.0277786
63. Zhang L, Zhao X, Wang E, Yang Y, Hu L, Xu H,
52. Mesa-Rodríguez A, Gonzalez A, Estevez-Rams E, Valdes- Zhang B. PYCR1 promotes the malignant progression of
Sosa PA. Cancer segmentation by entropic analysis lung cancer through the JAK-STAT signaling pathway via
3
of ordered gene expression profiles. Entropy (Basel). PRODH-dependent glutamine synthesize. Transl Oncol.
Volume 4 Issue 3 (2025) 68 doi: 10.36922/TD025190035

