Page 76 - TD-4-3
P. 76

Tumor Discovery                                               Highly accurate gene panels for cancer screening



               on Data Mining Proceedings. Maebashi City, Japan; 2002.   2022;24(12):1744.
               p. 155-162.
                                                                  doi: 10.3390/e24121744
               doi: 10.1109/ICDM.2002.1183898
                                                               53.  Gonzalez A, Quintela F, Leon DA, Bringas Vega ML, Valdes-
            41.  Lai H, Zhang D. Concept lattices of fuzzy contexts: Formal   Sosa P. Estimating the number of available states for normal
               concept analysis vs. rough set theory. Int J Approx Reason.   and tumor tissues in gene expression space.  Biophys Rep
               2009;50(5):695-707.                                (NY). 2022;2(2):100053.
               doi: 10.1016/j.ijar.2008.12.002                    doi: 10.1016/j.bpr.2022.100053
            42.  Pawlak, Z. Rough sets. Int J Comput Inf Sci. 1982;11(5):341-356.  54.  Bradner JE, Hnisz D, Young RA. Transcriptional addiction
                                                                  in cancer. Cell. 2017;168(4):629-643.
               doi: 10.1007/BF01001956
                                                                  doi: 10.1016/j.cell.2016.12.013
            43.  Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about
               Data. Dordrecht: Springer; 1991.                55.  Li Q, Dai W, Liu J, Sang Q, Li YX, Li YY. DysRegSig:
                                                                  An R package for identifying gene dysregulations and
               doi: 10.1007/978-94-011-3534-4
                                                                  building mechanistic signatures in cancer.  Bioinformatics.
            44.  Jia X, Shang L, Zhou B, Yao Y. Generalized attribute reduct   2021;37(3):429-430.
               in rough set theory. Knowl Based Syst. 2016;91:204-218.
                                                                  doi: 10.1093/bioinformatics/btaa688
               doi: 10.1016/j.knosys.2015.05.017
                                                               56.  Dalman MR, Deeter A, Nimishakavi G, Duan ZH. Fold
            45.  Zhang W. Attribute reduction theory and approach to   change and p-value cutoffs significantly alter microarray
               concept lattice. Sci China Ser F Inf Sci. 2005;48(6):713-726.  interpretations. BMC Bioinform. 2012;13(Suppl 2):S11.
               doi: 10.1360/122004-104                            doi: 10.1186/1471-2105-13-S2-S11
            46.  World Health Organization. Cancer. Available from: https://  57.  Khamas A, Ishikawa T, Shimokawa K, et al. Screening for
               www.who.int/news-room/factsheets/detail/cancer  [Last  epigenetically masked genes in colorectal cancer using
               accessed on 2025 April 15].                        5-Aza-2’-deoxycytidine, microarray and gene expression
            47.  Bengtsson M, Ståhlberg A, Rorsman P, Kubista M. Gene   profile. Cancer Genomics Proteomics. 2012;9(2):67-75.
               expression profiling in single cells from the pancreatic islets   58.  Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: Archive
               of Langerhans reveals lognormal distribution of mRNA   for functional genomics data sets--update. Nucleic Acids Res.
               levels. Genome Res. 2005;15(10):1388-1392.         2013;41(D1):D991-D995.
               doi: 10.1101/gr.3820805                            doi: 10.1093/nar/gks1193
            48.  Sha Y, Phan JH, Wang MD. Effect of Low-expression Gene   59.  Liu J, Zheng ML, Shi PC, Cao YP, Zhang JL, Xie YP. SCARA5
               Filtering on Detection of Differentially Expressed Genes in   is a novel biomarker in colorectal cancer by comprehensive
               RNA-seq Data. In: 37  Annual International Conference of   analysis. Clin Lab. 2020;66(7).
                               th
               the IEEE Engineering in Medicine and Biology Society. 2015.
               p. 6461.                                           doi: 10.7754/Clin.Lab.2019.191015
                                                               60.  Xu  JY,  Zhang  C,  Wang  X,  et al.  Integrative  proteomic
               doi: 10.1109/EMBC.2015.7319872
                                                                  characterization  of  human  lung  adenocarcinoma.  Cell.
            49.  Fang Z, Martin J, Wang Z. Statistical methods for identifying   2020;182(1):245-261.e17.
               differentially expressed genes in RNA-Seq experiments. Cell
               Biosci. 2012;2(1):26.                              doi: 10.1016/j.cell.2020.05.043
                                                               61.  Ruiz-Cordero R, Ma J, Khanna A, et al. Simplified molecular
               doi: 10.1186/2045-3701-2-26
                                                                  classification of lung adenocarcinomas based on EGFR,
            50.  Durães C, Pereira Gomes C, Costa JL, Quagliata L.   KRAS, and TP53 mutations. BMC Cancer. 2020;20(1):83.
               Demystifying the discussion of sequencing panel size in      doi: 10.1186/s12885-020-6579-z
               oncology genetic testing. Eur Med J. 2022;7(2):68-77
                                                               62.  Ren H, Ge DF, Yang ZC, Cheng ZT, Zhao SX, Zhang B.
               doi: 10.33590/emj/22C9259
                                                                  Integrated bioinformatics analysis identifies ALDH18A1
            51.  Gonzalez A, Leon DA, Perera Y, Perez R. On the   as a prognostic hub gene in glutamine metabolism in lung
               gene  expression  landscape  of  cancer.  PLoS One.   adenocarcinoma. Discov Oncol. 2025;16(1):1.
               2023;18(2):e0277786.
                                                                  doi: 10.1007/s12672-024-01698-3
               doi: 10.1371/journal.pone.0277786
                                                               63.  Zhang L, Zhao X, Wang E, Yang Y, Hu L, Xu H,
            52.  Mesa-Rodríguez A, Gonzalez A, Estevez-Rams E, Valdes-  Zhang B. PYCR1 promotes the malignant progression of
               Sosa PA. Cancer segmentation by entropic analysis   lung cancer through the JAK-STAT  signaling pathway via
                                                                                            3
               of ordered gene expression profiles.  Entropy  (Basel).   PRODH-dependent glutamine synthesize.  Transl Oncol.

            Volume 4 Issue 3 (2025)                         68                           doi: 10.36922/TD025190035
   71   72   73   74   75   76   77   78   79   80   81