Page 131 - AIH-1-3
P. 131
Artificial Intelligence in Health Interpretability of deep models for COVID-19
Networks Via Gradient-Based Localization. In: Proceedings Communication Association; 2021. p. 4301-4305.
of the IEEE International Conference on Computer Vision; doi: 10.21437/Interspeech.2021-1798
2017. p. 618-626.
21. Gauy MM, Berti LC, Cândido Júnior A, et al. Discriminant
doi: 10.1109/ICCV.2017.74
Audio Properties in Deep Learning Based Respiratory
11. Zheng F, Zhang G, Song Z. Comparison of different Insufficiency Detection in Brazilian Portuguese. In: Artificial
implementations of MFCC. J Comput Sci Technol. Intelligence in Medicine: 21 International Conference on
st
2001;16(6):582-589. Artificial Intelligence in Medicine; 2023. p. 271-275.
doi: 10.1007/BF02943243 doi: 10.1007/978-3-031-34344-5_32
12. Gauy MM, Finger M. Audio MFCC-Gram Transformers 22. Sobahi N, Atila O, Deniz E, Sengur A, Acharya UR.
for Respiratory Insufficiency Detection in COVID-19. Explainable COVID-19 detection using fractal dimension
In: Proceedings XIII Simpósio Brasileiro de Tecnologia da and vision Transformer with Grad-CAM on cough sounds.
Informação e da Linguagem Humana, STIL; 2021. p. 143-152. Biocybern Biomed Eng. 2022;42(3):1066-1080.
doi: 10.5753/stil.2021.17793 doi: 10.1016/j.bbe.2022.08.005
13. Kong Q, Cao Y, Iqbal T, Wang Y, Wang W, Plumbley MD. 23. Moujahid H, Cherradi B, Al-Sarem M, et al. Combining
PANNs: Large-Scale Pretrained Audio Neural Networks CNN and Grad-CAM for COVID-19 disease prediction
for Audio Pattern Recognition. Vol. 28. In: IEEE/ACM and visual explanation. Intell Autom Soft Comput.
Transactions on Audio, Speech, and Language Processing; 2022;32(2):723-745.
2020. p. 2880-2894.
doi: 10.32604/iasc.2022.022179
doi: 10.1109/TASLP.2020.3030497
24. Panwar H, Gupta P, Siddiqui MK, Morales-Menendez R,
14. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you Bhardwaj P, Singh V. A deep learning and Grad-CAM
need. Adv Neural Inform Process Syst. 2017;30:5998-6008. based color visualization approach for fast detection of
doi: 10.5555/3295222.3295349 COVID-19 cases using chest x-ray and ct-scan images.
Chaos Solitons Fractals. 2020;140:110190.
15. Bartl-Pokorny KD, Pokorny FB, Batliner A, et al. The voice
of COVID-19: Acoustic correlates of infection. J Acoust Soc doi: 10.1016/j.chaos.2020.110190
Am. 2021;149(6):4377. 25. Gauy MM, Finger M. Pretrained Audio Neural Networks
doi: 10.1121/10.0005194 for Speech Emotion Recognition in Portuguese. In: First
Workshop on Automatic Speech Recognition for Spontaneous
16. Berti LC, Spazzapan EA, Pereira PL, et al. Mudanças Nos and Prepared Speech Speech emotion recognition in
Parâmetros Acústicos da voz em Brasileiros com COVID-19. Portuguese, SE&R; 2022.
In: XXIX Congresso Brasileiro e o IX Congresso Internacional
de Fonoaudiologia; 2021. p. 2819-2819. 26. Xu X, Dinkel H, Wu M, Xie Z, Yu K. Investigating Local
and Global Information for Automated Audio Captioning
17. Berti LC, Spazzapan EA, Queiroz M, et al. Fundamental with Transfer Learning. In: IEEE International Conference
frequency related parameters in Brazilians with COVID-19. on Acoustics, Speech and Signal Processing (ICASSP); 2021.
J Acoust Soc Am. 2023;153:576-585. p. 905-909.
doi: 10.1121/10.0016848 doi: 10.1109/ICASSP39728.2021.9413982
18. Fernandes-Svartman FR, Berti LC, Martins MVM, de 27. Zhang H, Cisse M, Dauphin YN, Lopez-Paz D. mixup:
Medeiros BR, Queiroz M. Temporal Prosodic Cues for Beyond Empirical Risk Minimization. In: International
COVID-19 in Brazilian Portuguese Speakers. In: Proceedings Conference on Learning Representations; 2018.
Speech Prosody; 2022. p. 210-214.
28. 28. Xu K, Feng D, Mi H, et al. Mixup-based acoustic
doi: 10.21437/SpeechProsody.2022-43
scene classification using multi-channel convolutional
19. Schuller BW, Batliner A, Bergler C, et al. The INTERSPEECH neural network. In: Advances in Multimedia Information
2021 Computational Paralinguistics Challenge: COVID-19 Processing. Vol. 11166. Cham: Springer; 2018. p. 14-23.
Cough, COVID-19 Speech, Escalation and Primates. doi: 10.1007/978-3-030-00764-5_2
In: 22 Annual Conference of the International Speech
nd
Communication Association, INTERSPEECH; 2021. 29. Park DS, Chan W, ZhangY, et al. SpecAugment: A simple data
augmentation method for automatic speech recognition.
doi: 10.21437/Interspeech.2021-19
Proc Interspeech. 2019;1:2613-2617.
20. Casanova E, Cândido A, Fernandes RC, et al. Transfer
Learning and Data Augmentation Techniques to the doi: 10.21437/Interspeech.2019-2680
COVID-19 Identification Tasks in COMPARE 2021. 30. Brigham EO, Morrow R. The fast fourier transform. IEEE
In: 22 Annual Conference of the International Speech Spectrum. 1967;4(12):63-70.
nd
Volume 1 Issue 3 (2024) 125 doi: 10.36922/aih.2992

