Page 57 - AIH-1-3
P. 57
Artificial Intelligence in Health Predicting mortality in COVID-19 using ML
12. Zhou H, Ji J, Chen X, et al. Identification of novel bat 23. Goumenou M, Sarigiannis D, Tsatsakis A, et al. COVID19 in
coronaviruses sheds light on the evolutionary origins of SARS- Northern Italy: An integrative overview of factors possibly
CoV-2 and related viruses. Cell. 2021;184(17):4380-4391.e14. influencing the sharp increase of the outbreak (Review). Mol
Med Rep. 2020;22:20-32.
doi: 10.1016/j.cell.2021.06.008
doi: 10.3892/mmr.2020.11079
13. Wacharapluesadee S, Tan CW, Maneeorn P, et al. Evidence for
SARS-CoV-2 related coronaviruses circulating in bats and 24. Brake SJ, Barnsley K, Lu W, McAlinden KD, Eapen MS,
pangolins in Southeast Asia. Nat Commun. 2021;12(1):972. Sohal SS. smoking upregulates angiotensin-converting enzyme-2
receptor: A potential adhesion site for novel coronavirus SARS-
doi: 10.1038/s41467-021-21240-1
CoV-2 (Covid-19). J Clin Med. 2020;9(3):841.
14. Mitchell TM. Machine Learning. McGraw-Hill Science/
Engineering/Math; 1997. Available from: https://www. doi: 10.3390/jcm9030841
cin.ufpe.br/~cavmj/Machine%20-%20Learning%20-%20 25. Lewis T. Smoking or Vaping May Increase the Risk of a Severe
Tom%20Mitchell.pdf [Last accessed on 2023 Dec 18]. Coronavirus Infection. Scientific American; 2020. Available
from: https://www.scientificamerican.com/article/smoking-
15. Zoabi Y, Deri-Rozov S, Shomron N. Machine learning-based
prediction of COVID-19 diagnosis based on symptoms. NPJ or-vaping-may-increase-the-risk-of-a-severe-coronavirus-
Digit Med. 2021;4(1):3. infection1 [Last accessed on 2023 Dec 18].
26. Datos Abiertos Dirección General de Epidemiología.
doi: 10.1038/s41746-020-00372-6
Secretaría de Salud. Gobierno. Cobierno de Mexico; 2023.
16. Aljameel SS, Khan IU, Aslam N, Aljabri M, Alsulmi ES. Available from: https://www.gob.mx/salud/documentos/
Machine learning-based model to predict the disease datos-abiertos-152127 [Last accessed on 2023 Dec 18].
severity and outcome in COVID-19 patients. Sci Program. 27. Cramer JS. The origins of logistic regression. SSRN Electron
2021;2021:1-10.
J. 2005.
doi: 10.1155/2021/5587188
doi: 10.2139/ssrn.360300
17. Mullick B, Magar R, Jhunjhunwala A, Barati Farimani A.
Understanding mutation hotspots for the SARS-CoV-2 spike 28. Logistic Regression in Machine Learning - Javatpoint; 2021.
protein using Shannon Entropy and K-means clustering. Available from: https://www.javatpoint.com/logistic-regression-
Comput Biol Med. 2021;138:104915. in-machine-learning [Last accessed on 2023 Dec 18].
29. Utgoff PE. Incremental induction of decision trees. Mach
doi: 10.1016/j.compbiomed.2021.104915
Learn. 1989;4(2):161-186.
18. Ozger ZB, Cihan P. A novel ensemble fuzzy classification
model in SARS-CoV-2 B-cell epitope identification for 30. Kotsiantis S. Decision trees: A recent overview. Artif Intell
development of protein-based vaccine. Appl Soft Comput. Rev. 2013;39(4):261-283.
2022;116:108280. doi: 10.1007/s10462-011-9272-4
doi: 10.1016/j.asoc.2021.108280 31. Machine Learning Random Forest Algorithm - Javatpoint;
2021. https://www.javatpoint.com/machine-learning-
19. People with Certain Medical Conditions. Centers for Disease
Control and Prevention; 2023. Available from: https://www. random-forest-algorithm [Last accessed on 2023 Dec 18].
cdc.gov/coronavirus/2019-ncov/need-extra-precautions/ 32. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting
people-with-medical-conditions.html [Last accessed on System. In: Proceedings of the 22 ACM SIGKDD
nd
2023 Dec 18]. International Conference on Knowledge Discovery and Data
Mining. ACM; 2016. p. 785-794.
20. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes
of critically ill patients with SARS-CoV-2 pneumonia doi: 10.1145/2939672.2939785
in Wuhan, China: A single-centered, retrospective, 33. Beale R, Jackson T. Neural Computing: An Introduction.
observational study. Lancet Respir Med. 2020;8(5):475-481.
England: Adam Hilger; 1990.
doi: 10.1016/S2213-2600(20)30079-5
doi: 10.1887/0852742622
21. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics 34. Bezdek JC. On the relationship between neural networks,
of coronavirus disease 2019 in China. N Engl J Med. pattern recognition and intelligence. Int J Approx Reason.
2020;382(18):1708-1720.
1992;6(2):85-107.
doi: 10.1056/NEJMoa2002032
doi: 10.1016/0888-613X(92)90013-P
22. Cakir Edis E. Chronic pulmonary diseases and COVID-19. 35. Fix E, Hodges JL. Discriminatory analysis. Nonparametric
Turk Thorac J. 2020;21(5):345-349.
discrimination: Consistency properties. Int Stat Rev/Rev Int
doi: 10.5152/TurkThoracJ.2020.20091 Stat. 1989;57(3):238.
Volume 1 Issue 3 (2024) 51 doi: 10.36922/aih.2591

