Page 128 - AIH-1-4
P. 128
Artificial Intelligence in Health Complex early diagnosis of MS through machine learning
42. Patel MA, Villalobos F, Shan K, et al. Generative artificial 50. Hosmer DW, Lemeshow S. Applied Logistic Regression.
intelligence versus clinicians: Who diagnoses multiple United States: Wiley; 2000.
sclerosis faster and with greater accuracy? Mult Scler Relat doi: 10.1002/0471722146
Disord. 2024;90:105791.
51. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical
doi: 10.1016/j.msard.2024.105791 Learning. New York: Springer; 2009.
43. Rasouli S, Dakkali MS, Azarbad R, et al. Predicting the doi: 10.1007/978-0-387-84858-7
conversion from clinically isolated syndrome to multiple
sclerosis: An explainable machine learning approach. Mult 52. Chavarria V, Espinosa-Ramírez G, Sotelo J, et al. Conversion
Scler Relat Disord. 2024;86:105614. predictors of clinically isolated syndrome to multiple
sclerosis in Mexican patients: A prospective study. Arch Med
doi: 10.1016/j.msard.2024.105614 Res. 2023;54(5):102843.
44. Lundberg SM, Lee SI. A unified approach to interpreting doi: 10.1016/j.arcmed.2023.102843
model predictions. Adv Neural Inf Process Syst. 2017;30:4765-
4774. 53. Bradley AP. The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognit.
doi: 10.48550/arXiv.1705.07874 1997;30(7):1145-1159.
45. Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, doi: 10.1016/S0031-3203(96)00142-2
Gulin A. CatBoost: Unbiased Boosting with Categorical
Features. arXiv [Preprint]; 2018. 54. Sokolova M, Lapalme G. A systematic analysis of
performance measures for classification tasks. Inf Process
doi: 10.48550/arXiv.1810.11363 Manag. 2009;45(4):427-437.
46. Chen T, Guestrin C. XGBoost. In: Proceedings of the doi: 10.1016/j.ipm.2009.03.002
22 ACM SIGKDD International Conference on Knowledge
nd
Discovery and Data Mining. ACM; 2016. p. 785-794. 55. Shapiro SS, Wilk MB. An analysis of variance test for normality
(Complete Samples). Biometrika. 1965;52(3/4):591.
doi: 10.1145/2939672.2939785
doi: 10.2307/2333709
47. Machado MR, Karray S, de Sousa IT. LightGBM: An
Effective Decision Tree Gradient Boosting Method to 56. Friedman M. The use of ranks to avoid the assumption of
Predict Customer Loyalty in the Finance Industry. In: normality implicit in the analysis of variance. J Am Stat
2019 14 International Conference on Computer Science & Assoc. 1937;32(200):675-701.
th
Education (ICCSE). IEEE; 2019. p. 1111-1116. doi: 10.1080/01621459.1937.10503522
doi: 10.1109/ICCSE.2019.8845529 57. Nemenyi P. Distribution-Free Multiple Comparisons.
Princeton: Princeton University; 1963.
48. Breiman L. Random forests. Mach Learn. 2001;45(1):5-32.
58. Ali S, Akhlaq F, Imran AS, Kastrati Z, Daudpota SM,
doi: 10.1023/A:1010933404324
Moosa M. The enlightening role of explainable artificial
49. Cortes C, Vapnik V. Support-vector networks. Mach Learn. intelligence in medical & healthcare domains: A systematic
1995;20(3):273-297. literature review. Comput Biol Med. 2023;166:107555.
doi: 10.1007/BF00994018 doi: 10.1016/j.compbiomed.2023.107555
Volume 1 Issue 4 (2024) 122 doi: 10.36922/aih.4255

