Page 128 - AIH-1-4
P. 128

Artificial Intelligence in Health                        Complex early diagnosis of MS through machine learning



            42.  Patel MA, Villalobos F, Shan K, et al. Generative artificial   50.  Hosmer DW, Lemeshow S.  Applied Logistic Regression.
               intelligence versus clinicians: Who diagnoses multiple   United States: Wiley; 2000.
               sclerosis faster and with greater accuracy? Mult Scler Relat      doi: 10.1002/0471722146
               Disord. 2024;90:105791.
                                                               51.  Hastie T, Tibshirani R, Friedman J. The Elements of Statistical
               doi: 10.1016/j.msard.2024.105791                   Learning. New York: Springer; 2009.
            43.  Rasouli S, Dakkali MS, Azarbad R,  et al. Predicting the      doi: 10.1007/978-0-387-84858-7
               conversion from clinically isolated syndrome to multiple
               sclerosis: An explainable machine learning approach. Mult   52.  Chavarria V, Espinosa-Ramírez G, Sotelo J, et al. Conversion
               Scler Relat Disord. 2024;86:105614.                predictors of clinically isolated syndrome to multiple
                                                                  sclerosis in Mexican patients: A prospective study. Arch Med
               doi: 10.1016/j.msard.2024.105614                   Res. 2023;54(5):102843.
            44.  Lundberg SM, Lee SI. A unified approach to interpreting      doi: 10.1016/j.arcmed.2023.102843
               model predictions. Adv Neural Inf Process Syst. 2017;30:4765-
               4774.                                           53.  Bradley AP. The use of the area under the ROC curve in the
                                                                  evaluation of machine learning algorithms. Pattern Recognit.
               doi: 10.48550/arXiv.1705.07874                     1997;30(7):1145-1159.
            45.  Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV,      doi: 10.1016/S0031-3203(96)00142-2
               Gulin  A.  CatBoost:  Unbiased  Boosting  with  Categorical
               Features. arXiv [Preprint]; 2018.               54.  Sokolova M, Lapalme G. A  systematic analysis of
                                                                  performance measures for classification tasks.  Inf Process
               doi: 10.48550/arXiv.1810.11363                     Manag. 2009;45(4):427-437.
            46.  Chen  T,  Guestrin  C.  XGBoost.  In:  Proceedings of the      doi: 10.1016/j.ipm.2009.03.002
               22  ACM SIGKDD International Conference on Knowledge
                 nd
               Discovery and Data Mining. ACM; 2016. p. 785-794.  55.  Shapiro SS, Wilk MB. An analysis of variance test for normality
                                                                  (Complete Samples). Biometrika. 1965;52(3/4):591.
               doi: 10.1145/2939672.2939785
                                                                  doi: 10.2307/2333709
            47.  Machado  MR,  Karray  S,  de Sousa IT. LightGBM:  An
               Effective Decision Tree Gradient Boosting Method to   56.  Friedman M. The use of ranks to avoid the assumption of
               Predict Customer Loyalty in the Finance Industry. In:   normality implicit in the analysis of variance.  J  Am Stat
               2019 14  International Conference on Computer Science &   Assoc. 1937;32(200):675-701.
                     th
               Education (ICCSE). IEEE; 2019. p. 1111-1116.       doi: 10.1080/01621459.1937.10503522
               doi: 10.1109/ICCSE.2019.8845529                 57.  Nemenyi  P.  Distribution-Free  Multiple  Comparisons.
                                                                  Princeton: Princeton University; 1963.
            48.  Breiman L. Random forests. Mach Learn. 2001;45(1):5-32.
                                                               58.  Ali S, Akhlaq F, Imran AS, Kastrati Z, Daudpota SM,
               doi: 10.1023/A:1010933404324
                                                                  Moosa   M. The enlightening role of explainable artificial
            49.  Cortes C, Vapnik V. Support-vector networks. Mach Learn.   intelligence in medical & healthcare domains: A systematic
               1995;20(3):273-297.                                literature review. Comput Biol Med. 2023;166:107555.
               doi: 10.1007/BF00994018                            doi: 10.1016/j.compbiomed.2023.107555


























            Volume 1 Issue 4 (2024)                        122                               doi: 10.36922/aih.4255
   123   124   125   126   127   128   129   130