Page 127 - AIH-1-4
P. 127
Artificial Intelligence in Health Complex early diagnosis of MS through machine learning
21. Piri Cinar B, Ozakbas S. Prediction of conversion from 31. Banerjee T, Saha M, Ghosh E, et al. Conversion of clinically
clinically isolated syndrome to multiple sclerosis according isolated syndrome to multiple sclerosis: A prospective
to baseline characteristics: A prospective study. Noro multi-center study in Eastern India. Mult Scler J Exp Transl
Psikiyatr Ars. 2018;55:15-21. Clin. 2019;5(2):205521731984972.
doi: 10.29399/npa.12667 doi: 10.1177/2055217319849721
22. Shaheen HA, Sayed SS, Daker LI, Taha MA. Early predictors 32. Rommer PS, Milo R, Han MH, et al. Immunological aspects
of conversion in patients with clinically isolated syndrome: of approved MS therapeutics. Front Immunol. 2019;10:1564.
A preliminary Egyptian study. Egypt J Neurol Psychiatr doi: 10.3389/fimmu.2019.01564
Neurosurg. 2018;54(1):21.
33. Pinto MF, Oliveira H, Batista S, et al. Prediction of disease
doi: 10.1186/s41983-018-0021-3
progression and outcomes in multiple sclerosis with
23. Bi CF, Qian HR, Peng LJ, et al. The correlation factor analysis machine learning. Sci Rep. 2020;10(1):21038.
for conversion of clinically isolated syndrome to multiple doi: 10.1038/s41598-020-78212-6
sclerosis and neuromyelitis optica. Zhonghua Nei Ke Za Zhi.
2016;55(6):460-465. 34. Zhao Y, Healy BC, Rotstein D, et al. Exploration of machine
learning techniques in predicting multiple sclerosis disease
doi: 10.3760/cma.j.issn.0578-1426.2016.06.012
course. PLoS One. 2017;12(4):e0174866.
24. Kuhle J, Disanto G, Dobson R, et al. Conversion from doi: 10.1371/journal.pone.0174866
clinically isolated syndrome to multiple sclerosis: A large
multicentre study. Mult Scler. 2015;21(8):1013-1024. 35. Ion-Mărgineanu A, Kocevar G, Stamile C, et al. Machine
learning approach for classifying multiple sclerosis courses
doi: 10.1177/1352458514568827
by combining clinical data with lesion loads and magnetic
25. CHAMPS Study Group. MRI predictors of early conversion resonance metabolic features. Front Neurosci. 2017;11:398.
to clinically definite MS in the CHAMPS placebo group. doi: 10.3389/fnins.2017.00398
Neurology. 2002;59(7):998-1005.
36. Wottschel V, Alexander DC, Kwok PP, et al. Predicting
doi: 10.1212/WNL.59.7.998
outcome in clinically isolated syndrome using machine
26. Alroughani R, Al Hashel J, Lamdhade S, Ahmed SF. learning. Neuroimage Clin. 2015;7:281-287.
Predictors of conversion to multiple sclerosis in patients doi: 10.1016/j.nicl.2014.11.021
with clinical isolated syndrome using the 2010 revised
McDonald criteria. ISRN Neurol. 2012;2012:792192. 37. Jasperse B, Barkhof F. Machine Learning in Multiple Sclerosis.
United States: Humana Press Inc.; 2023. p. 899-919.
doi: 10.5402/2012/792192
doi: 10.1007/978-1-0716-3195-9_28
27. Kolčava J, Kočica J, Hulová M, et al. Conversion of clinically
isolated syndrome to multiple sclerosis: A prospective study. 38. Branco D, di Martino B, Esposito A, Tedeschi G,
Mult Scler Relat Disord. 2020;44:102262. Bonavita S, Lavorgna L. Machine learning techniques for
prediction of multiple sclerosis progression. Soft Comput.
doi: 10.1016/j.msard.2020.102262
2022;26(22):12041-12055.
28. Zhang H, Alberts E, Pongratz V, et al. Predicting conversion doi: 10.1007/s00500-022-07503-z
from clinically isolated syndrome to multiple sclerosis-an
imaging-based machine learning approach. Neuroimage 39. Haouam KD, Benmalek M. Machine learning algorithms
Clin. 2019;21:101593. for early prediction of multiple sclerosis progression:
A comparative study. Adv Artif Intell Mach Learn.
doi: 10.1016/j.nicl.2018.11.003
2024;04(01):2027-2051.
29. Bendfeldt K, Taschler B, Gaetano L, et al. MRI-based
prediction of conversion from clinically isolated syndrome doi: 10.54364/AAIML.2024.41116
to clinically definite multiple sclerosis using SVM and lesion 40. Vázquez-Marrufo M, Sarrias-Arrabal E, García-Torres M,
geometry. Brain Imaging Behav. 2019;13(5):1361-1374. Martín-Clemente R, Izquierdo G. A systematic review of
the application of machine-learning algorithms in multiple
doi: 10.1007/s11682-018-9942-9
sclerosis. Neurología (Engl Ed). 2023;38(8):577-590.
30. Yoo Y, Tang LYW, Li DKB, et al. Deep learning of brain lesion
patterns and user-defined clinical and MRI features for doi: 10.1016/j.nrleng.2020.10.013
predicting conversion to multiple sclerosis from clinically 41. Naji Y, Mahdaoui M, Klevor R, Kissani N. Artificial
isolated syndrome. Comput Methods Biomech Biomed Eng intelligence and multiple sclerosis: Up-to-date review.
Imaging Vis. 2019;7(3):250-259. Cureus. 2023;15:e45412.
doi: 10.1080/21681163.2017.1356750 doi: 10.7759/cureus.45412
Volume 1 Issue 4 (2024) 121 doi: 10.36922/aih.4255

