Page 71 - AIH-2-1
P. 71

Artificial Intelligence in Health                                Algorithm and metal oxide nanoparticle in MRI



               and neurodegenerative diseases: An observational study.      doi: 10.1371/journal.pone.0171704
               Biol Trace Elem Res. 2014;161(2):151-160.
                                                               23.  Wang J, Mei T, Liu Y,  et al. Dual-targeted and
               doi: 10.1007/s12011-014-0094-5                     MRI-guided photothermal therapy via iron-based
                                                                  nanoparticles-incorporated  neutrophils.  Biomater Sci.
            13.  Forte G, Alimonti A, Pino A,  et al. Metals and oxidative
               stress in patients with Parkinson’s disease.  Ann Ist Super   2021;9(11):3968-3978.
               Sanita. 2005;41(2):189-195.                        doi: 10.1039/D1BM00127B
            14.  Roos PM, Vesterberg O, Syversen T, Flaten TP, Nordberg M.   24.  Blanco-Andujar C, Walter A, Cotin G,  et al. Design of
               Metal concentrations in cerebrospinal fluid and blood   iron oxide-based nanoparticles for MRI and magnetic
               plasma from patients with amyotrophic lateral sclerosis. Biol   hyperthermia. Nanomedicine. 2016;11(14):1889-1910.
               Trace Elem Res. 2013;151(2):159-170.               doi: 10.2217/nnm-2016-5001
               doi: 10.1007/s12011-012-9547-x                  25.  Norouzi A, Rahim MSM, Altameem A, et al. Medical image
            15.  Squadrone S, Brizio P, Abete MC, Brusco A. Trace elements   segmentation methods, algorithms, and applications. IETE
               profile in the blood of Huntington’ disease patients. J Trace   Tech Rev. 2014;31(3):199-213.
               Elem Med Biol. 2020;57:18-20.                      doi: 10.1080/02564602.2014.906861
               doi: 10.1016/j.jtemb.2019.09.006                26.  Castiglioni I, Rundo L, Codari M, et al. AI applications to
            16.  Xiao YD, Paudel R, Liu J, Ma C, Zhang ZS, Zhou SK. MRI   medical images: From machine learning to deep learning.
               contrast agents: Classification and application (Review). Int   Phys Med. 2021;83:9-24.
               J Mol Med. 2016;38(5):1319-1326.                   doi: 10.1016/j.ejmp.2021.02.006
               doi: 10.3892/ijmm.2016.2744                     27.  Sharma N, Ray A, Shukla K, et al. Automated medical image
            17.  Liu Z, Zhao M, Wang H, et al. High relaxivity Gd3+-based   segmentation techniques. J Med Phys. 2010;35(1):3-14.
               organic nanoparticles for efficient magnetic resonance      doi: 10.4103/0971-6203.58777
               angiography. J Nanobiotechnology. 2022;20(1):170.
                                                               28.  Liu H, Ren L, Fan B, Wang W, Hu X, Zhang X. Artificial
               doi: 10.1186/s12951-022-01363-3                    intelligence algorithm-based MRI in the diagnosis of
            18.  Elhabiri M, Abada S, Sy M,  et al. Importance of outer-  complications  after  renal  transplantation.  Contrast Media
               sphere and aggregation phenomena in the relaxation   Mol Imaging. 2022;2022:8930584.
               properties of phosphonated gadolinium complexes with      doi: 10.1155/2022/8930584
               potential applications as MRI contrast agents.  Chemistry.
               2015;21(17):6535-6546.                          29.  Guo YY, Huang YH, Wang Y, Huang J, Lai QQ, Li YZ. Breast
                                                                  MRI  tumor  automatic  segmentation  and  triple-negative
               doi: 10.1002/chem.201500155                        breast cancer discrimination algorithm based on deep
            19.  Zheng  R,  Guo  J,  Cai  X,  et al.  Manganese  complexes  and   learning. Comput Math Methods Med. 2022;2022:2541358.
               manganese-based metal-organic  frameworks  as contrast      doi: 10.1155/2022/2541358
               agents in MRI and chemotherapeutics agents: Applications
               and prospects.  Colloids  Surfaces  B  Biointerfaces.   30.  Liu B, Tan B, Huang L,  et al. Intelligent algorithm-
               2022;213:112432.                                   based picture archiving and communication system of
                                                                  mri  images  and  radiology  information  system-based
               doi: 10.1016/j.colsurfb.2022.112432                medical informatization.  Contrast Media Mol Imaging.
            20.  Jun YW, Lee JH, Cheon J. Chemical design of nanoparticle   2021;2021:4997329.
               probes for high‐performance magnetic resonance imaging.      doi: 10.1155/2021/4997329
               Angew Chem Int Ed Engl. 2008;47(28):5122-5135.
                                                               31.  Wang  X,  Li  X,  Chen  H,  Peng  Y,  Li  Y.  Pulmonary  MRI
               doi: 10.1002/anie.200701674                        radiomics and machine learning: Effect of intralesional
            21.  Cai X, Zhu Q, Zeng Y, Zeng Q, Chen X, Zhan Y. Manganese   heterogeneity on classification of lesion.  Acad Radiol.
               oxide nanoparticles as MRI contrast agents in tumor   2022;29:S73-S81.
               multimodal imaging and therapy.  Int J Nanomedicine.      doi: 10.1016/j.acra.2020.12.020
               2019;14:8321-8344.
                                                               32.  Chang S, Han K, Lee S, et al. Automated measurement of
               doi: 10.2147/IJN.S218085                           native T1 and extracellular volume fraction in cardiac
            22.  Olchowy C, Cebulski K, Łasecki M, et al. The presence of the   magnetic resonance imaging using a commercially
               gadolinium-based contrast agent depositions in the brain   available deep learning algorithm.  Korean J Radiol.
               and symptoms of gadolinium neurotoxicity - A systematic   2022;23(12):1251-1259.
               review. PLoS One. 2017;12(2):e0171704.             doi: 10.3348/kjr.2022.0496


            Volume 2 Issue 1 (2025)                         65                               doi: 10.36922/aih.3947
   66   67   68   69   70   71   72   73   74   75   76