Page 72 - AIH-2-1
P. 72
Artificial Intelligence in Health Algorithm and metal oxide nanoparticle in MRI
33. Bidhult S, Kantasis G, Aletras AH, Arheden H, Heiberg E, 44. Zaparoli HH, De Oliveira M, Lisboa-Filho PN, Piacenti-
Hedström E. Validation of T1 and T2 algorithms for Silva M. Using zinc particles in a phantom to simulate
quantitative MRI: Performance by a vendor-independent multiple sclerosis lesions on magnetic resonance imaging.
software. BMC Med Imaging. 2016;16(1):46. Rev Bras Física Méd. 2021;15:619.
doi: 10.1186/s12880-016-0148-6 doi: 10.29384/rbfm.2021.v15.19849001619
34. Jibon FA, Khandaker MU, Miraz MH, et al. Cancerous and 45. Oliveira E, Rocha M, Froner AP, Basso N, Zanini M,
non-cancerous brain MRI classification method based on Papaléo R. Synthesis and nuclear magnetic relaxation
convolutional neural network and log-polar transformation. properties of composite iron oxide nanoparticles. Quim
Healthcare (Basel). 2022;10(9):1801. Nova. 2018;42: 57-64.
doi: 10.3390/healthcare10091801 doi: 10.21577/0100-4042.20170309
35. Holzinger A, Plass M, Kickmeier-Rust M, et al. Interactive 46. Perona P, Malik J. Scale-space and edge detection using
machine learning: Experimental evidence for the human in anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell.
the algorithmic loop. Appl Intell. 2019;49(7):2401-2414. 1990;12(7):629-639.
doi: 10.1007/s10489-018-1361-5 doi: 10.1109/34.56205
36. Topol EJ. High-performance medicine: The convergence of 47. Gerig G, Kbler O, Kikinis R, Jolesz FA. Nonlinear
human and artificial intelligence. Nat Med. 2019;25(1):44-56. anisotropic filtering of MRI data. IEEE Trans Med Imaging.
doi: 10.1038/s41591-018-0300-7 1992;11(2):221-232.
37. Modan EM, Plăiașu AG. Advantages and disadvantages doi: 10.1109/42.141646
of chemical methods in the elaboration of nanomaterials. 48. Tustison NJ, Avants BB, Cook PA, et al. N4ITK:
Ann Dunarea Jos Univ Galati Fascicle IX Metall Mater Sci. Improved N3 bias correction. IEEE Trans Med Imaging.
2020;43(1):53-60. 2010;29(6):1310-1320.
doi: 10.35219/mms.2020.1.08 doi: 10.1109/TMI.2010.2046908
38. Priyadharsini CI, Marimuthu G, Pazhanivel T, et al. Sol-Gel 49. García-Lorenzo D, Francis S, Narayanan S, Arnold DL,
synthesis of Co3O4 nanoparticles as an electrode material Collins DL. Review of automatic segmentation methods
for supercapacitor applications. J Sol Gel Sci Technol. of multiple sclerosis white matter lesions on conventional
2020;96(2):416-422. magnetic resonance imaging. Med Image Anal.
doi: 10.1007/s10971-020-05393-x 2013;17(1):1-18.
39. Alagiri M, Hamid SBA. Sol-gel synthesis of α-Fe2O3 doi: 10.1016/j.media.2012.09.004
nanoparticles and its photocatalytic application. J Sol Gel Sci 50. Bland JM, Altman DG. Statistical methods for assessing
Technol. 2015;74(3):783-789. agreement between two methods of clinical measurement.
doi: 10.1007/s10971-015-3663-y Lancet. 1986;1(8476):307-310.
40. Marlin V, Lugo C, Manuel P, et al. Synthesis and 51. Wu S, He M, Yang M, Zhang B, Wang F, Li Q. Near-infrared
characterization of magnetic nickel used in dry rerforming spectroscopy study of serpentine minerals and assignment
of methane. Revista Ciencia e Ingeniería.. 2017;38:31-40. of the OH group. Crystals. 2021;11(9):1130.
41. Pires LA, de Azevedo Silva LJ, Ferrairo BM, et al. Effects doi: 10.3390/cryst11091130
of ZnO/TiO nanoparticle and TiO nanotube additions 52. Packiaraj R, Devendran P, Venkatesh KS, Asath Bahadur S,
2
2
to dense polycrystalline hydroxyapatite bioceramic from Manikandan A, Nallamuthu N. Electrochemical
bovine bones. Dent Mater. 2020;36(2):e38-e46. investigations of magnetic Co3O4 nanoparticles as an active
doi: 10.1016/j.dental.2019.11.006 electrode for supercapacitor applications. J Supercond Nov
Magn. 2019;32(8):2427-2436.
42. Gates-Rector S, Blanton T. The Powder Diffraction File:
A quality materials characterization database. Powder Diffr. doi: 10.1007/s10948-018-4963-6
2019;34(4):352-360. 53. Binitha NN, Suraja PV, Yaakob Z, Resmi MR, Silija PP. Simple
doi: 10.1017/S0885715619000812 synthesis of Co3O4 nanoflakes using a low temperature sol-
gel method suitable for photodegradation of dyes. J Sol Gel
43. Ahammed KR, Ashaduzzaman M, Paul SC, et al. Microwave
assisted synthesis of zinc oxide (ZnO) nanoparticles Sci Technol. 2010;53(2):466-469.
in a noble approach: Utilization for antibacterial and doi: 10.1007/s10971-009-2098-8
photocatalytic activity. SN Appl Sci. 2020;2(5):955.
54. Farhadi S, Pourzare K, Sadeghinejad S. Simple preparation of
doi: 10.1007/s42452-020-2762-8 ferromagnetic Co3O4 nanoparticles by thermal dissociation
Volume 2 Issue 1 (2025) 66 doi: 10.36922/aih.3947

