Page 72 - AIH-2-1
P. 72

Artificial Intelligence in Health                                Algorithm and metal oxide nanoparticle in MRI



            33.  Bidhult S, Kantasis G, Aletras AH, Arheden H, Heiberg E,   44.  Zaparoli HH, De Oliveira  M, Lisboa-Filho PN, Piacenti-
               Hedström E. Validation of T1 and T2 algorithms for   Silva M. Using zinc particles in a phantom to simulate
               quantitative MRI: Performance by a vendor-independent   multiple sclerosis lesions on magnetic resonance imaging.
               software. BMC Med Imaging. 2016;16(1):46.          Rev Bras Física Méd. 2021;15:619.
               doi: 10.1186/s12880-016-0148-6                     doi: 10.29384/rbfm.2021.v15.19849001619
            34.  Jibon FA, Khandaker MU, Miraz MH, et al. Cancerous and   45.  Oliveira E, Rocha M, Froner AP, Basso N, Zanini M,
               non-cancerous brain MRI classification method based on   Papaléo  R. Synthesis and nuclear magnetic relaxation
               convolutional neural network and log-polar transformation.   properties of composite iron oxide nanoparticles.  Quim
               Healthcare (Basel). 2022;10(9):1801.               Nova. 2018;42: 57-64.
               doi: 10.3390/healthcare10091801                    doi: 10.21577/0100-4042.20170309
            35.  Holzinger A, Plass M, Kickmeier-Rust M, et al. Interactive   46.  Perona P, Malik J. Scale-space and edge detection using
               machine learning: Experimental evidence for the human in   anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell.
               the algorithmic loop. Appl Intell. 2019;49(7):2401-2414.  1990;12(7):629-639.
               doi: 10.1007/s10489-018-1361-5                     doi: 10.1109/34.56205
            36.  Topol EJ. High-performance medicine: The convergence of   47.  Gerig G, Kbler O, Kikinis R, Jolesz FA. Nonlinear
               human and artificial intelligence. Nat Med. 2019;25(1):44-56.  anisotropic filtering of MRI data. IEEE Trans Med Imaging.
               doi: 10.1038/s41591-018-0300-7                     1992;11(2):221-232.
            37.  Modan EM, Plăiașu AG. Advantages and disadvantages      doi: 10.1109/42.141646
               of chemical methods in the elaboration of nanomaterials.   48.  Tustison NJ, Avants BB, Cook PA,  et  al. N4ITK:
               Ann Dunarea Jos Univ Galati Fascicle IX Metall Mater Sci.   Improved N3 bias correction.  IEEE Trans Med Imaging.
               2020;43(1):53-60.                                  2010;29(6):1310-1320.
               doi: 10.35219/mms.2020.1.08                        doi: 10.1109/TMI.2010.2046908
            38.  Priyadharsini CI, Marimuthu G, Pazhanivel T, et al. Sol-Gel   49.  García-Lorenzo  D,  Francis  S,  Narayanan  S,  Arnold  DL,
               synthesis of Co3O4 nanoparticles as an electrode material   Collins  DL. Review  of automatic  segmentation  methods
               for supercapacitor applications.  J  Sol Gel Sci Technol.   of multiple sclerosis white matter lesions on conventional
               2020;96(2):416-422.                                magnetic  resonance  imaging.  Med  Image  Anal.
               doi: 10.1007/s10971-020-05393-x                    2013;17(1):1-18.
            39.  Alagiri M, Hamid SBA. Sol-gel synthesis of  α-Fe2O3      doi: 10.1016/j.media.2012.09.004
               nanoparticles and its photocatalytic application. J Sol Gel Sci   50.  Bland JM, Altman DG. Statistical methods for assessing
               Technol. 2015;74(3):783-789.                       agreement between two methods of clinical measurement.
               doi: 10.1007/s10971-015-3663-y                     Lancet. 1986;1(8476):307-310.
            40.  Marlin  V,  Lugo  C,  Manuel  P,  et al.  Synthesis  and   51.  Wu S, He M, Yang M, Zhang B, Wang F, Li Q. Near-infrared
               characterization of magnetic nickel used in dry rerforming   spectroscopy study of serpentine minerals and assignment
               of methane.  Revista Ciencia e Ingeniería.. 2017;38:31-40.  of the OH group. Crystals. 2021;11(9):1130.
            41.  Pires LA, de Azevedo Silva LJ, Ferrairo BM, et al. Effects      doi: 10.3390/cryst11091130
               of ZnO/TiO  nanoparticle and TiO  nanotube additions   52.  Packiaraj R, Devendran P, Venkatesh KS, Asath Bahadur S,
                                          2
                         2
               to dense polycrystalline hydroxyapatite bioceramic from   Manikandan  A,  Nallamuthu  N.  Electrochemical
               bovine bones. Dent Mater. 2020;36(2):e38-e46.      investigations of magnetic Co3O4 nanoparticles as an active
               doi: 10.1016/j.dental.2019.11.006                  electrode for supercapacitor applications. J Supercond Nov
                                                                  Magn. 2019;32(8):2427-2436.
            42.  Gates-Rector S, Blanton T. The Powder Diffraction File:
               A quality materials characterization database. Powder Diffr.      doi: 10.1007/s10948-018-4963-6
               2019;34(4):352-360.                             53.  Binitha NN, Suraja PV, Yaakob Z, Resmi MR, Silija PP. Simple
               doi: 10.1017/S0885715619000812                     synthesis of Co3O4 nanoflakes using a low temperature sol-
                                                                  gel method suitable for photodegradation of dyes. J Sol Gel
            43.  Ahammed KR, Ashaduzzaman M, Paul SC, et al. Microwave
               assisted synthesis of zinc oxide (ZnO) nanoparticles   Sci Technol. 2010;53(2):466-469.
               in a noble approach: Utilization for antibacterial and      doi: 10.1007/s10971-009-2098-8
               photocatalytic activity. SN Appl Sci. 2020;2(5):955.
                                                               54.  Farhadi S, Pourzare K, Sadeghinejad S. Simple preparation of
               doi: 10.1007/s42452-020-2762-8                     ferromagnetic Co3O4 nanoparticles by thermal dissociation



            Volume 2 Issue 1 (2025)                         66                               doi: 10.36922/aih.3947
   67   68   69   70   71   72   73   74   75   76   77