Page 98 - AIH-2-1
P. 98
Artificial Intelligence in Health Benchmarking ML imputation in mental health surveys
doi: 10.18637/jss.v045.i03 22. Croy CD, Novins DK. Methods for addressing missing data
in psychiatric and developmental research. J Am Acad Child
14. Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple
imputation by chained equations: What is it and how does it Adolesc Psychiatry. 2005;44:1230-1240.
work? Int J Methods Psychiatr Res. 2011;20:40-49. doi: 10.1097/01.chi.0000181044.06337.6f
doi: 10.1002/mpr.329 23. Lee JH, Huber JC Jr. Evaluation of multiple imputation with
large proportions of missing data: How much is too much?
15. Taunk K, De S, Verma S, Swetapadma A. A Brief Review of
Nearest Neighbor Algorithm for Learning and Classification. Iran J Public Health. 2021;50:1372-1380.
In: 2019 International Conference on Intelligent Computing doi: 10.18502/ijph.v50i7.6626
and Control Systems (ICCS). IEE; 2019.
24. Petrazzini BO, Naya H, Lopez-Bello F, Vazquez G,
16. Stekhoven DJ, Bühlmann P. MissForest--non-parametric Spangenberg L. Evaluation of different approaches for
missing value imputation for mixed-type data. Bioinformatics. missing data imputation on features associated to genomic
2011;28:112-118. data. BioData Mining. 2021;14:44.
doi: 10.1093/bioinformatics/btr597 doi: 10.1186/s13040-021-00274-7
17. Lall R, Robinson T. The MIDAS touch: Accurate and 25. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-
scalable missing-data imputation with deep learning. Polit learn: Machine learning in Python. J Mach Learn Res.
Anal. 2022;30:179-196. 2011;12:2825-2830.
doi: 10.1017/pan.2020.49 26. Lall R, Robinson T. Efficient multiple imputation for diverse
data in python and R: MIDASpy and rMIDAS. J Stat Softw.
18. Shrive FM, Stuart H, Quan H, Ghali WA. Dealing with missing
data in a multi-question depression scale: A comparison of 2023;107:1-38.
imputation methods. BMC Med Res Methodol. 2006;6:57. doi: 10.18637/jss.v107.i09
doi: 10.1186/1471-2288-6-57 27. Fawns-Ritchie C, Deary IJ. Reliability and validity of the UK
Biobank cognitive tests. PLoS One. 2020;15:e0231627.
19. Peyre H, Leplège A, Coste J. Missing data methods for
dealing with missing items in quality of life questionnaires. doi: 10.1371/journal.pone.0231627
A comparison by simulation of personal mean score, full 28. Schweren LJS, van Rooij D, Shi H, et al. Diet, physical
information maximum likelihood, multiple imputation, and activity, and disinhibition in middle-aged and older adults:
hot deck techniques applied to the SF-36 in the French 2003 A UK biobank study. Nutrients. 2021;13:1607.
decennial health survey. Qual Life Res. 2011;20:287-300.
doi: 10.3390/nu13051607
doi: 10.1007/s11136-010-9740-3
29. Grau E, Frechtel P, Odom D, Painter D. A Simple Evaluation
20. Emmanuel T, Maupong T, Mpoeleng D, Semong T, of the Imputation Procedures Used in NSDUH. In:
Mphago B, Tabona O. A survey on missing data in machine Proceedings of the 2004 Joint Statistical Meetings, American
learning. J Big Data. 2021;8:140.
Statistical Association, Section on Survey Research Methods,
doi: 10.1186/s40537-021-00516-9 Toronto, Ontario, Canada [CD-ROM]. Alexandria, VA:
American Statistical; 2004.
21. Xu X, Xia L, Zhang Q, Wu S, Wu M, Liu H. The ability of
different imputation methods for missing values in mental 30. An U, Pazokitoroudi A, Alvarez M, et al. Deep learning-based
measurement questionnaires. BMC Med Res Methodol. phenotype imputation on population-scale biobank data
2020;20:42. increases genetic discoveries. Nat Genet. 2023;55:2269-2276.
doi: 10.1186/s12874-020-00932-0 doi: 10.1038/s41588-023-01558-w
Volume 2 Issue 1 (2025) 92 doi: 10.36922/aih.4406

