Page 98 - AIH-2-1
P. 98

Artificial Intelligence in Health                          Benchmarking ML imputation in mental health surveys



               doi: 10.18637/jss.v045.i03                      22.  Croy CD, Novins DK. Methods for addressing missing data
                                                                  in psychiatric and developmental research. J Am Acad Child
            14.  Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple
               imputation by chained equations: What is it and how does it   Adolesc Psychiatry. 2005;44:1230-1240.
               work? Int J Methods Psychiatr Res. 2011;20:40-49.     doi: 10.1097/01.chi.0000181044.06337.6f
               doi: 10.1002/mpr.329                            23.  Lee JH, Huber JC Jr. Evaluation of multiple imputation with
                                                                  large proportions of missing data: How much is too much?
            15.  Taunk K, De S, Verma S, Swetapadma A. A Brief Review of
               Nearest Neighbor Algorithm for Learning and Classification.   Iran J Public Health. 2021;50:1372-1380.
               In: 2019 International Conference on Intelligent Computing      doi: 10.18502/ijph.v50i7.6626
               and Control Systems (ICCS). IEE; 2019.
                                                               24.  Petrazzini BO, Naya H, Lopez-Bello F, Vazquez G,
            16.  Stekhoven DJ, Bühlmann P. MissForest--non-parametric   Spangenberg L. Evaluation of different approaches for
               missing value imputation for mixed-type data. Bioinformatics.   missing data imputation on features associated to genomic
               2011;28:112-118.                                   data. BioData Mining. 2021;14:44.
               doi: 10.1093/bioinformatics/btr597                 doi: 10.1186/s13040-021-00274-7
            17.  Lall R, Robinson T. The MIDAS touch: Accurate and   25.  Pedregosa F, Varoquaux G, Gramfort  A, et al. Scikit-
               scalable missing-data imputation with deep learning. Polit   learn: Machine learning in Python.  J  Mach Learn Res.
               Anal. 2022;30:179-196.                             2011;12:2825-2830.
               doi: 10.1017/pan.2020.49                        26.  Lall R, Robinson T. Efficient multiple imputation for diverse
                                                                  data in python and R: MIDASpy and rMIDAS. J Stat Softw.
            18.  Shrive FM, Stuart H, Quan H, Ghali WA. Dealing with missing
               data in a multi-question depression scale: A comparison of   2023;107:1-38.
               imputation methods. BMC Med Res Methodol. 2006;6:57.     doi: 10.18637/jss.v107.i09
               doi: 10.1186/1471-2288-6-57                     27.  Fawns-Ritchie C, Deary IJ. Reliability and validity of the UK
                                                                  Biobank cognitive tests. PLoS One. 2020;15:e0231627.
            19.  Peyre  H,  Leplège  A,  Coste  J.  Missing  data  methods  for
               dealing with missing items in quality of life questionnaires.      doi: 10.1371/journal.pone.0231627
               A  comparison by simulation of personal mean score, full   28.  Schweren LJS,  van Rooij  D, Shi H,  et al. Diet,  physical
               information maximum likelihood, multiple imputation, and   activity, and disinhibition in middle-aged and older adults:
               hot deck techniques applied to the SF-36 in the French 2003   A UK biobank study. Nutrients. 2021;13:1607.
               decennial health survey. Qual Life Res. 2011;20:287-300.
                                                                  doi: 10.3390/nu13051607
               doi: 10.1007/s11136-010-9740-3
                                                               29.  Grau E, Frechtel P, Odom D, Painter D. A Simple Evaluation
            20.  Emmanuel T, Maupong T, Mpoeleng D, Semong T,     of the Imputation Procedures Used in NSDUH. In:
               Mphago B, Tabona O. A survey on missing data in machine   Proceedings of the 2004 Joint Statistical Meetings, American
               learning. J Big Data. 2021;8:140.
                                                                  Statistical Association, Section on Survey Research Methods,
               doi: 10.1186/s40537-021-00516-9                    Toronto, Ontario, Canada  [CD-ROM]. Alexandria, VA:
                                                                  American Statistical; 2004.
            21.  Xu X, Xia L, Zhang Q, Wu S, Wu M, Liu H. The ability of
               different imputation methods for missing values in mental   30.  An U, Pazokitoroudi A, Alvarez M, et al. Deep learning-based
               measurement  questionnaires.  BMC Med Res Methodol.   phenotype  imputation  on  population-scale  biobank  data
               2020;20:42.                                        increases genetic discoveries. Nat Genet. 2023;55:2269-2276.
               doi: 10.1186/s12874-020-00932-0                    doi: 10.1038/s41588-023-01558-w





















            Volume 2 Issue 1 (2025)                         92                               doi: 10.36922/aih.4406
   93   94   95   96   97   98   99   100   101   102   103