Page 129 - AIH-2-3
P. 129

Artificial Intelligence in Health                              Opportunities for AI-based arrhythmia screening



               À La Série de Lagrange, sur les Fonctions Symétriques, et sur la   deep learning electrocardiogram algorithm for the detection
               Formation Directe des Équations Que Produit L’élimination des   of left ventricular systolic dysfunction.  J  Cardiovasc
               Inconnues Entre des Équations Algébriques Données. Mémoires   Electrophysiol. 2019;30(5):668-674.
               de l’Académie des Sciences, t. IX; 1830. p.  73-78. Available      doi: 10.1111/jce.13889
               from:   https://gallica.bnf.fr/ark:/12148/bpt6k901828/f79
               [Last accessed on 2025 Mar 18].                 53.  Kwon JM,  Kim KH,  Jeon  KH,  et al. Development
                                                                  and   validation  of  deep-learning  algorithm  for
            42.  Steele JM. The Cauchy-Schwarz Master Class: An Introduction   electrocardiography-based  heart  failure  identification.
               to the Art of Mathematical Inequalities. The Mathematical   Korean Circ J. 2019;49(7):629-639.
               Association of America. Cambridge, UK: Cambridge
               University Press; 2004.                            doi: 10.1097/mat.0000000000001218
            43.  Steiger WL. On a generalization of the Cauchy-Schwarz in   54.  Cho J, Lee B, Kwon JM, et al. Artificial intelligence algorithm
               equality. Am Math Monthly. 1969;76:815-816.        for screening heart failure with reduced ejection fraction
                                                                  using electrocardiography. ASAIO J. 2021;67(3):314-321.
               doi: 10.1080/00029890.1969.12000339
                                                                  doi: 10.1097/mat.0000000000001218
            44.  Pishro-Nik H.  Introduction to Probability, Statistics, and
               Random Processes. Sunderland MA: Kappa Research LLC;   55.  Pickham D, Zarafshar S, Sani D, Kumar N, Froelicher  V.
               2014. Available from: https://www.probabilitycourse.com   Comparison of three ECG criteria for athlete pre-
               [Last accessed on 2025 Mar 18].                    participation screening. J Electrocardiol. 2014;47(6):769-774.
            45.  Shamloo AS. Risk assessment in cardiac arrhythmias. Eur      doi: 10.1016/j.jelectrocard.2014.07.019
               Heart J. 2020;41(47):4455-4457.                 56.  Sheikh N, Papadakis M, Ghani S,  et  al. Comparison of
               doi: 10.1093/eurheartj/ehaa808                     electrocardiographic criteria for the detection of cardiac
                                                                  abnormalities in elite black and white athletes. Circulation.
            46.  Takase B, Ikeda T, Shimizu W, et al. JCS/JHRS 2022 guideline   2014;129(16):1637-1649.
               on diagnosis and risk assessment of arrhythmia. J Arrhythm.
               2024;40(4):655-752.                                doi: 10.1161/CIRCULATIONAHA.113.006179
               doi: 10.1002/joa3.13052                         57.  Ko WY, Siontis KC, Attia ZI,  et al. Detection of
                                                                  hypertrophic cardiomyopathy using a convolutional neural
            47.  Redfield MM, Jacobsen SJ, Burnett JC Jr., Mahoney DW, Bailey   network-enabled electrocardiogram. J  Am Coll Cardiol.
               KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular   2020;75(7):722-733.
               dysfunction in the community: Appreciating the scope of the
               heart failure epidemic. JAMA. 2003;289(2):194-202.     doi: 10.1016/j.jacc.2019.12.030
                                                               58.  Kwon  JM, Jeon KH,  Kim  HM,  et al.  Comparing  the
               doi: 10.1001/jama.289.2.194
                                                                  performance of artificial intelligence and conventional
            48.  McDonagh TA, Metra M, Adamo M, et al. 2023 Focused   diagnosis criteria for detecting left ventricular hypertrophy
               Update of the 2021 ESC Guidelines for the diagnosis and   using electrocardiography. Europace. 2020;22(3):412-419.
               treatment of acute and chronic heart failure. Eur Heart J.
               2023;44(37):3627-3639.                             doi: 10.1093/europace/euz324
                                                               59.  Han L, Askari M, Altman RB, et al. Atrial fibrillation burden
               doi: 10.1093/eurheartj/ehad195
                                                                  signature and near-term prediction of stroke: A  machine
            49.  Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac   learning analysis.  Circ Cardiovasc Qual Outcomes.
               contractile dysfunction using an artificial intelligence-  2019;12(10):e005595.
               enabled electrocardiogram. Nat Med. 2019;25(1):70-74.
                                                                  doi: 10.1161/CIRCOUTCOMES.118.005595
               doi: 10.1038/s41591-018-0240-2
                                                               60.  Bos JM, Attia ZI, Albert DE, Noseworthy PA, Friedman PA,
            50.  Ribeiro AH, Ribeiro MH, Paixão GMM,  et  al. Automatic   Ackerman MJ. Use of artificial intelligence and deep neural
               diagnosis of the 12-lead ECG using a deep neural network.   networks in evaluation of patients with electrocardiographically
               Nat Commun. 2020;11(1):1760.                       concealed long QT syndrome from the surface 12-lead
                                                                  electrocardiogram. JAMA Cardiol. 2021;6(5):532-538.
               doi: 10.1038/s41467-020-15432-4
                                                                  doi: 10.1001/jamacardio.2020.7422
            51.  Rawi AA, Elbashir MK, Ahme AM. Classification of 27 heart
               abnormalities using 12-lead ECG  signals  with combined   61.  Aufiero S, Bleijendaal H, Robyns T, et al. A deep learning
               deep learning techniques.  Bull Electrical Eng Inform.   approach identifies new ECG features in congenital long QT
               2023;12(4):2220-2235.                              syndrome. BMC Med. 2022;20(1):162.
               doi: 10.11591/eei.v12i4.4668                       doi: 10.1186/s12916-022-02350-z
            52.  Attia ZI, Kapa S, Yao X, et al. Prospective validation of a   62.  Available from: https://www.biopac.com/knowledge-base/


            Volume 2 Issue 3 (2025)                        123                               doi: 10.36922/aih.8468
   124   125   126   127   128   129   130   131   132   133   134