Page 129 - AIH-2-3
P. 129
Artificial Intelligence in Health Opportunities for AI-based arrhythmia screening
À La Série de Lagrange, sur les Fonctions Symétriques, et sur la deep learning electrocardiogram algorithm for the detection
Formation Directe des Équations Que Produit L’élimination des of left ventricular systolic dysfunction. J Cardiovasc
Inconnues Entre des Équations Algébriques Données. Mémoires Electrophysiol. 2019;30(5):668-674.
de l’Académie des Sciences, t. IX; 1830. p. 73-78. Available doi: 10.1111/jce.13889
from: https://gallica.bnf.fr/ark:/12148/bpt6k901828/f79
[Last accessed on 2025 Mar 18]. 53. Kwon JM, Kim KH, Jeon KH, et al. Development
and validation of deep-learning algorithm for
42. Steele JM. The Cauchy-Schwarz Master Class: An Introduction electrocardiography-based heart failure identification.
to the Art of Mathematical Inequalities. The Mathematical Korean Circ J. 2019;49(7):629-639.
Association of America. Cambridge, UK: Cambridge
University Press; 2004. doi: 10.1097/mat.0000000000001218
43. Steiger WL. On a generalization of the Cauchy-Schwarz in 54. Cho J, Lee B, Kwon JM, et al. Artificial intelligence algorithm
equality. Am Math Monthly. 1969;76:815-816. for screening heart failure with reduced ejection fraction
using electrocardiography. ASAIO J. 2021;67(3):314-321.
doi: 10.1080/00029890.1969.12000339
doi: 10.1097/mat.0000000000001218
44. Pishro-Nik H. Introduction to Probability, Statistics, and
Random Processes. Sunderland MA: Kappa Research LLC; 55. Pickham D, Zarafshar S, Sani D, Kumar N, Froelicher V.
2014. Available from: https://www.probabilitycourse.com Comparison of three ECG criteria for athlete pre-
[Last accessed on 2025 Mar 18]. participation screening. J Electrocardiol. 2014;47(6):769-774.
45. Shamloo AS. Risk assessment in cardiac arrhythmias. Eur doi: 10.1016/j.jelectrocard.2014.07.019
Heart J. 2020;41(47):4455-4457. 56. Sheikh N, Papadakis M, Ghani S, et al. Comparison of
doi: 10.1093/eurheartj/ehaa808 electrocardiographic criteria for the detection of cardiac
abnormalities in elite black and white athletes. Circulation.
46. Takase B, Ikeda T, Shimizu W, et al. JCS/JHRS 2022 guideline 2014;129(16):1637-1649.
on diagnosis and risk assessment of arrhythmia. J Arrhythm.
2024;40(4):655-752. doi: 10.1161/CIRCULATIONAHA.113.006179
doi: 10.1002/joa3.13052 57. Ko WY, Siontis KC, Attia ZI, et al. Detection of
hypertrophic cardiomyopathy using a convolutional neural
47. Redfield MM, Jacobsen SJ, Burnett JC Jr., Mahoney DW, Bailey network-enabled electrocardiogram. J Am Coll Cardiol.
KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular 2020;75(7):722-733.
dysfunction in the community: Appreciating the scope of the
heart failure epidemic. JAMA. 2003;289(2):194-202. doi: 10.1016/j.jacc.2019.12.030
58. Kwon JM, Jeon KH, Kim HM, et al. Comparing the
doi: 10.1001/jama.289.2.194
performance of artificial intelligence and conventional
48. McDonagh TA, Metra M, Adamo M, et al. 2023 Focused diagnosis criteria for detecting left ventricular hypertrophy
Update of the 2021 ESC Guidelines for the diagnosis and using electrocardiography. Europace. 2020;22(3):412-419.
treatment of acute and chronic heart failure. Eur Heart J.
2023;44(37):3627-3639. doi: 10.1093/europace/euz324
59. Han L, Askari M, Altman RB, et al. Atrial fibrillation burden
doi: 10.1093/eurheartj/ehad195
signature and near-term prediction of stroke: A machine
49. Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac learning analysis. Circ Cardiovasc Qual Outcomes.
contractile dysfunction using an artificial intelligence- 2019;12(10):e005595.
enabled electrocardiogram. Nat Med. 2019;25(1):70-74.
doi: 10.1161/CIRCOUTCOMES.118.005595
doi: 10.1038/s41591-018-0240-2
60. Bos JM, Attia ZI, Albert DE, Noseworthy PA, Friedman PA,
50. Ribeiro AH, Ribeiro MH, Paixão GMM, et al. Automatic Ackerman MJ. Use of artificial intelligence and deep neural
diagnosis of the 12-lead ECG using a deep neural network. networks in evaluation of patients with electrocardiographically
Nat Commun. 2020;11(1):1760. concealed long QT syndrome from the surface 12-lead
electrocardiogram. JAMA Cardiol. 2021;6(5):532-538.
doi: 10.1038/s41467-020-15432-4
doi: 10.1001/jamacardio.2020.7422
51. Rawi AA, Elbashir MK, Ahme AM. Classification of 27 heart
abnormalities using 12-lead ECG signals with combined 61. Aufiero S, Bleijendaal H, Robyns T, et al. A deep learning
deep learning techniques. Bull Electrical Eng Inform. approach identifies new ECG features in congenital long QT
2023;12(4):2220-2235. syndrome. BMC Med. 2022;20(1):162.
doi: 10.11591/eei.v12i4.4668 doi: 10.1186/s12916-022-02350-z
52. Attia ZI, Kapa S, Yao X, et al. Prospective validation of a 62. Available from: https://www.biopac.com/knowledge-base/
Volume 2 Issue 3 (2025) 123 doi: 10.36922/aih.8468

