Page 130 - AIH-2-4
P. 130

Artificial Intelligence in Health                                 RefSAM3D for medical image segmentation




            Table 3. Comparison of abdominal multi‑organ segmentation results
            Metric  Method       Spleen  R.Kd  L.Kd  GB  Eso.  Liver  Stomach  Aorta  IVC  Veins  Pancreas  AG  Average
            Dice (%)  nnU-Net     97.0  95.3  95.3  63.5  77.5  97.4  89.1  90.1  88.5  79.0  87.1  75.2  86.3
                    Swin-UNETR    95.6  94.2  94.3  63.6  75.5  96.6  79.2  89.9  83.7  75.0  82.2  67.3  83.1
                    UNETR++       94.2  92.1  95.4  65.0  75.9  96.9  88.3  85.5  84.9  76.1  81.8  71.3  83.95
                    nnFormer      93.5  94.9  95.0  64.1  79.5  96.8  90.1  89.7  85.9  77.8  85.6  73.9  85.6
                    3D UX-Net     94.6  94.2  94.3  59.3  72.2  96.4  73.4  87.2  84.9  72.2  80.9  67.1  81.4
                    3DSAM-adapter  94.3  96.1  94.1  62.9  79.9  96.1  83.8  88.4  85.3  75.6  83.1  69.4  84.1
                    MA-SAM        96.7  95.1  95.4  68.2  82.1  96.9  92.8  91.1  87.5  79.8  86.6  73.9  87.2
                    Ref‑SAM3D     97.1  94.9  96.1  70.3  85.2  97.3  94.1  92.3  88.8  80.4  87.5  75.1  88.3
            HD (%)  nnU-Net       1.07  1.19  1.19  7.49  8.56  1.14  4.84  14.11  2.87  5.67  2.31  2.23  4.39
                    Swin-UNETR    1.21  1.41  1.37  2.25  5.82  1.70  13.75  5.92  4.46  7.58  3.53  3.40  4.37
                    UNETR++       5.99  1.23  1.33  5.99  10.37  33.12  5.23  8.23  2.14  10.34  3.12  2.13  7.44
                    nnFormer      78.03  1.41  1.43  3.00  4.92  1.38  4.24  7.53  4.02  6.53  2.96  2.76  9.95
                    3D UX-Net     3.17  1.59  1.26  4.53  13.92  1.75  19.72  12.53  3.47  9.99  3.70  4.11  6.68
                    3DSAM-adapter  3.38  1.23  1.21  2.23  5.43  1.15  4.00  6.47  7.88  5.18  4.71  3.94  3.90
                    MA-SAM        1.00  1.19  1.07  1.59  3.77  1.36  3.87  5.29  3.12  3.25  3.93  2.57  2.67
                    Ref‑SAM3D     1.30  1.32  1.00  1.21  3.18  1.23  3.77  4.12  2.30  3.12  3.08  2.44  2.34
            Abbreviations: 3D: Three-dimensional; AG: Average; Eso.: Esophagus; GB: Gall bladder; HD: Hausdorff distance; IVC: Inferior vena cava; L.Kd: Left
            kidney; nn: No new; R.kd: Right kidney; SAM: Segment Anything Model; UNETR: U-Net Transformers; UX-Net: UNet-eXpanded Network.























            Figure 4. Qualitative visualization of segmentation results generated from our Ref-SAM3D method and other state-of-the-art methods on the Beyond the
            Cranial Vault dataset. Rkid and Lkid refer to the right and left kidneys, respectively. Sto, rad, and lad stand for stomach, respectively.
            Abbreviations: 3D: Three-dimensional; IVC: Inferior vena cava; nn: No new; NSD: Normalized surface Dice; SAM: Segment Anything Model;
            UNETR: U-Net Transformers; UX-Net: UNet-eXpanded Network.

            performance, achieving a mean dice coefficient of 85.7%   Furthermore, when employing a five-shot fine-tuning
            on CT images, indicating robust generalization across   strategy on the AMOS22 MRI data, Ref-SAM3D
            different CT acquisition protocols and patient cohorts.   exhibited even more impressive results, achieving a dice
            Notably, in the challenging cross-modality scenario of   score of 84.1% (Figure  6). This represents a substantial
            MRI segmentation, our model maintained substantial   improvement over the fine-tuned versions of nnU-Net
            performance with a dice score of 63.2% (±3.1%),    (72.4%)  and  Swin-UNETR  (75.3%),  demonstrating  the
            significantly surpassing baseline methods, including   model’s superior adaptability and learning efficiency with
            nnU-Net (12.1%) and Swin-UNETR (15.3%).            minimal additional training data. These results underscore



            Volume 2 Issue 4 (2025)                        124                          doi: 10.36922/AIH025080010
   125   126   127   128   129   130   131   132   133   134   135