Page 134 - AIH-2-4
P. 134

Artificial Intelligence in Health                                 RefSAM3D for medical image segmentation



            31.  Cheng J, Ye Y, Deng Z,  et al.  Sam-med2d. arXiv preprint   benchmark (LiTS). Med Image Anal. 2023;84:102680.
               arXiv: 2308.116184; 2023.
                                                                  doi: 10.1016/j.media.2022.102680
            32.  Lei W, Wei X, Zhang X, Li K, Zhang S. Medlsam: Localize   45.  Antonelli M, Reinke A, Bakas S,  et al. The medical
               and Segment Anything Model for 3D CT Images. arXiv   segmentation decathlon. Nat Commun. 2022;13(1):4128.
               preprint arXiv: 2306.14752; 2024.
                                                                  doi: 10.1038/s41467-022-30695-9
            33.  Yang Y, Wu X, He T, Zhao H, Liu X.  Sam3d: Segment
               Anything in 3D Scenes. In: International Conference on   46.  Zhuang X, Li L, Payer C. Evaluation of algorithms for multi-
               Computer Vision; 2023.                             modality whole heart segmentation: An open-access grand
                                                                  challenge. Med Image Anal. 2019;58:101537.
            34.  Chen C, Miao J, Wu D, et al. Ma-sam: Modality-agnostic
               sam adaptation for 3D medical image segmentation. Med   doi: 10.1016/j.media.2019.101537
               Image Anal. 2024;98:103310.                     47.  Landman B, Xu Z, Iglesias J, Styner M, Langerak T,
            35.  Pan J, Lin Z, Zhu X, Shao J, Li H. St-adapter: Parameter-  Klein  A. Miccai multi-atlas labeling beyond the cranial
               Efficient Image-to-Video Transfer Learning. arXiv preprint   vault-workshop and challenge. Vol. 5. In: Proceeding MICCAI
               arXiv: 2206.13559; 2022.                           Multi-Atlas Labeling Beyond Cranial Vault-Workshop
                                                                  Challenge; 2015. p. 12.
            36.  Muksimova S, Umirzakova S, Baltayev J, Cho YI. Rl-cervix.
               net: A hybrid lightweight model integrating reinforcement   48.  Tang Y, Yang D, Li W, et al. Self-supervised Pre-training of
               learning for cervical cell classification. Diagnostics (Basel).   Swin Transformers for 3d Medical Image Analysis. arXiv
               2025;15(3):364.                                    preprint arXiv:2111.14791; 2022.
                                                               49.  Ji  Y,  Bai  H,  Yang  J,  et al.  Amos: A  Large-scale Abdominal
            37.  Jia M, Tang L, Chen BC, et al. Visual Prompt Tuning. arXiv   Multiorgan Benchmark for Versatile Medical Image
               Preprint arXiv: 2203.12119; 2022.
                                                                  Segmentation. arXiv preprint arXiv:2206.08023; 2022.
            38.  Radford A, Kim JW, Hallacy C, et al. Learning transferable   50.  Isensee F, Petersen J, Klein A, et al. nnU-net: Self-Adapting
               visual models from natural language supervision. In:   Framework for u-net-Based Medical Image Segmentation.
               International Conference on Machine Learning. PMLR; 2021.   arXiv preprint arXiv: 1809.10486; 2018.
               p. 8748-8763.
                                                               51.  Ronneberger O, Fischer P, Brox T. U-net:  Convolutional
            39.  Jia  C, Yang  Y, Xia  Y,  et al. Scaling  up visual and vision-  networks for biomedical image segmentation. In: Wells
               language representation learning with noisy text supervision.   WM 3 , Frangi AF, editors. Medical Image Computing and
                                                                       rd
               In:  International Conference on Machine Learning. PMLR;   Computer-Assisted Intervention  -  MICCAI, Nassir Navab,
               2021, pp. 4904–4916.                               Joachim Hornegger; 2015.
            40.  Dosovitskiy  A.  An Image is Worth 16x16 Words:   52.  Hatamizadeh A, Nath V, Tang Y, Yang D, Roth H, Xu D.
               Transformers for Image Recognition at Scale. arXiv preprint   Swin  unetr:  Swin  Transformers  for  Semantic  Segmentation
               arXiv:2010.11929; 2020.                            of Brain Tumors in MRI Images. arXiv preprint arXiv:
            41.  Ding H, Liu C, Wang S, Jiang X. Vision-language transformer   2201.01266; 2022.
               and query generation for referring segmentation. In:   53.  Zhou HY, Guo J, Zhang Y,  et al. nnformer: Volumetric
               Proceedings of the IEEE/CVF International Conference on   medical  image  segmentation  via  a  3D  transformer.  IEEE
               Computer Vision; 2021. p. 16321-16330.             Trans Image Process. 2023;32:4036-4045.
            42.  Li Y, Zhang J, Teng X, Lan L, Liu X.  Refsam: Efficiently      doi: 10.1109/TIP.2023.3293771
               Adapting Segmenting Anything Model for Referring Video
               Object Segmentation. arXiv Preprint arXiv: 2307.00997; 2024.  54.  Shaker A, Maaz M, Rasheed H, et al. Unetr++: Delving into
                                                                  Efficient and Accurate 3D Medical Image Segmentation. arXiv
            43.  Heller  N, Isensee F,  Trofimova D.  The kits21 Challenge:   Preprint arXiv: 2212.04497; 2024.
               Automatic Segmentation of Kidneys, Renal Tumors, and   55.  Lee HH, Bao S, Huo Y, Landman BA. 3D ux-net: A Large
               Renal Cysts in Corticomedullary-phase ct. arXiv Preprint   Kernel Volumetric Convnet Modernizing Hierarchical
               arXiv: 2307.01984; 2023.
                                                                  Transformer for Medical Image Segmentation. arXiv Preprint
            44.  Bilic P, Christ P, Li HB, et al. The liver tumor segmentation   arXiv: 2209.15076; 2023.













            Volume 2 Issue 4 (2025)                        128                          doi: 10.36922/AIH025080010
   129   130   131   132   133   134   135   136   137   138   139