Page 134 - AIH-2-4
P. 134
Artificial Intelligence in Health RefSAM3D for medical image segmentation
31. Cheng J, Ye Y, Deng Z, et al. Sam-med2d. arXiv preprint benchmark (LiTS). Med Image Anal. 2023;84:102680.
arXiv: 2308.116184; 2023.
doi: 10.1016/j.media.2022.102680
32. Lei W, Wei X, Zhang X, Li K, Zhang S. Medlsam: Localize 45. Antonelli M, Reinke A, Bakas S, et al. The medical
and Segment Anything Model for 3D CT Images. arXiv segmentation decathlon. Nat Commun. 2022;13(1):4128.
preprint arXiv: 2306.14752; 2024.
doi: 10.1038/s41467-022-30695-9
33. Yang Y, Wu X, He T, Zhao H, Liu X. Sam3d: Segment
Anything in 3D Scenes. In: International Conference on 46. Zhuang X, Li L, Payer C. Evaluation of algorithms for multi-
Computer Vision; 2023. modality whole heart segmentation: An open-access grand
challenge. Med Image Anal. 2019;58:101537.
34. Chen C, Miao J, Wu D, et al. Ma-sam: Modality-agnostic
sam adaptation for 3D medical image segmentation. Med doi: 10.1016/j.media.2019.101537
Image Anal. 2024;98:103310. 47. Landman B, Xu Z, Iglesias J, Styner M, Langerak T,
35. Pan J, Lin Z, Zhu X, Shao J, Li H. St-adapter: Parameter- Klein A. Miccai multi-atlas labeling beyond the cranial
Efficient Image-to-Video Transfer Learning. arXiv preprint vault-workshop and challenge. Vol. 5. In: Proceeding MICCAI
arXiv: 2206.13559; 2022. Multi-Atlas Labeling Beyond Cranial Vault-Workshop
Challenge; 2015. p. 12.
36. Muksimova S, Umirzakova S, Baltayev J, Cho YI. Rl-cervix.
net: A hybrid lightweight model integrating reinforcement 48. Tang Y, Yang D, Li W, et al. Self-supervised Pre-training of
learning for cervical cell classification. Diagnostics (Basel). Swin Transformers for 3d Medical Image Analysis. arXiv
2025;15(3):364. preprint arXiv:2111.14791; 2022.
49. Ji Y, Bai H, Yang J, et al. Amos: A Large-scale Abdominal
37. Jia M, Tang L, Chen BC, et al. Visual Prompt Tuning. arXiv Multiorgan Benchmark for Versatile Medical Image
Preprint arXiv: 2203.12119; 2022.
Segmentation. arXiv preprint arXiv:2206.08023; 2022.
38. Radford A, Kim JW, Hallacy C, et al. Learning transferable 50. Isensee F, Petersen J, Klein A, et al. nnU-net: Self-Adapting
visual models from natural language supervision. In: Framework for u-net-Based Medical Image Segmentation.
International Conference on Machine Learning. PMLR; 2021. arXiv preprint arXiv: 1809.10486; 2018.
p. 8748-8763.
51. Ronneberger O, Fischer P, Brox T. U-net: Convolutional
39. Jia C, Yang Y, Xia Y, et al. Scaling up visual and vision- networks for biomedical image segmentation. In: Wells
language representation learning with noisy text supervision. WM 3 , Frangi AF, editors. Medical Image Computing and
rd
In: International Conference on Machine Learning. PMLR; Computer-Assisted Intervention - MICCAI, Nassir Navab,
2021, pp. 4904–4916. Joachim Hornegger; 2015.
40. Dosovitskiy A. An Image is Worth 16x16 Words: 52. Hatamizadeh A, Nath V, Tang Y, Yang D, Roth H, Xu D.
Transformers for Image Recognition at Scale. arXiv preprint Swin unetr: Swin Transformers for Semantic Segmentation
arXiv:2010.11929; 2020. of Brain Tumors in MRI Images. arXiv preprint arXiv:
41. Ding H, Liu C, Wang S, Jiang X. Vision-language transformer 2201.01266; 2022.
and query generation for referring segmentation. In: 53. Zhou HY, Guo J, Zhang Y, et al. nnformer: Volumetric
Proceedings of the IEEE/CVF International Conference on medical image segmentation via a 3D transformer. IEEE
Computer Vision; 2021. p. 16321-16330. Trans Image Process. 2023;32:4036-4045.
42. Li Y, Zhang J, Teng X, Lan L, Liu X. Refsam: Efficiently doi: 10.1109/TIP.2023.3293771
Adapting Segmenting Anything Model for Referring Video
Object Segmentation. arXiv Preprint arXiv: 2307.00997; 2024. 54. Shaker A, Maaz M, Rasheed H, et al. Unetr++: Delving into
Efficient and Accurate 3D Medical Image Segmentation. arXiv
43. Heller N, Isensee F, Trofimova D. The kits21 Challenge: Preprint arXiv: 2212.04497; 2024.
Automatic Segmentation of Kidneys, Renal Tumors, and 55. Lee HH, Bao S, Huo Y, Landman BA. 3D ux-net: A Large
Renal Cysts in Corticomedullary-phase ct. arXiv Preprint Kernel Volumetric Convnet Modernizing Hierarchical
arXiv: 2307.01984; 2023.
Transformer for Medical Image Segmentation. arXiv Preprint
44. Bilic P, Christ P, Li HB, et al. The liver tumor segmentation arXiv: 2209.15076; 2023.
Volume 2 Issue 4 (2025) 128 doi: 10.36922/AIH025080010

