Page 133 - AIH-2-4
P. 133

Artificial Intelligence in Health                                 RefSAM3D for medical image segmentation



            References                                         16.  Zhang Y, Jiao R. Towards Segment Anything Model (sam) for
                                                                  Medical Image Segmentation: A Survey. arXiv preprint arXiv:
            1.   Obuchowicz R, Strzelecki M, Piorkowski A. Clinical   2305.03678; 2023.
               applications of artificial intelligence in medical imaging
               and image processing-A review.  Cancers  (Basel).   17.  Ma J, He Y, Li F, Han L, You C, Wang B. Segment anything in
               2024;16(10):1870.                                  medical images. Nat Commun. 2024;15(1):654.
               doi: 10.3390/cancers16101870                       doi: 10.1038/s41467-024-44824-z.
            2.   Addimulam S, Mohammed MA, Karanam RK,  et al.   18.  Shaharabany T, Dahan A, Giryes R, Wolf L.  Autosam:
               Deep learning-enhanced image segmentation for medical   Adapting Sam to Medical Images by Overloading the Prompt
               diagnostics. Malays J Med Biol Res. 2020;7(2):145-152.  Encoder. arXiv preprint arXiv: 2306.06370; 2023.
            3.   Khalifa  M, Albadawy M. AI in diagnostic imaging:   19.  Na S, Guo Y, Jiang F, Ma H, Huang J.  Segment any Cell:
               Revolutionising accuracy and efficiency. In:  Computer   A  Sam-Based Auto-Prompting Finetuning Framework for
               Methods and Programs in Biomedicine Update. Vol. 5; 2024.  Nuclei Segmentation. arXiv preprint arXiv: 2401.13220; 2024.
            4.   Kirillov A, Mintun E, Ravi N, et al. Segment anything. In:   20.  Min B, Ross H, Sulem E, et al.  Recent advances in natural
               Proceedings of the IEEE/CVF International Conference on   language processing via large pre-trained language models:
               Computer Vision; 2023. p. 4015-4026.               a survey. ACM Comput Surv. 2024;57(1):1-45.
            5.   Zou X, Yang J, Zhang H, et al. Segment Everything Everywhere   doi: 10.1145/3605943
               all at Once. arXiv Preprint arXiv: 2304.06718; 2023.
                                                               21.  Radford A, Kim JW, Hallacy C, et al. Learning transferable
            6.   Huang Y, Yang X, Liu L, et al. Segment anything model for   visual models from natural language supervision.  arXiv
               medical images? Med Image Anal. 2024;92:103061.    preprint arXiv:2103.00020;2021.
               doi: 10.1016/j.media.2023.103061                22.  Jia C, Yang Y, Xia Y, et al. Scaling up visual and vision-
                                                                  language representation learning with noisy text supervision.
            7.   Hu EJ, Shen Y, Wallis P, et al. Lora: Low-rank adaptation of
               large language models. arXiv preprint:2106.09685, 2021.  arXiv preprint arXiv:2102.05918; 2021.
            8.   Poth C, Sterz H, Paul I, et al. Adapters: A unified library   23.  Zou X, Yang J, Zhang H,  et al. Segment everything
               for parameter-efficient and modular transfer learning. In:   everywhere all at once. In: Oh A, Naumann T, Globerson A,
               Feng Y, Lefever E, editors. Proceedings of the 2023 Conference   Saenko K, Hardt M, Levine S, editors. Advances in Neural
               on Empirical Methods in Natural Language Processing,   Information Processing Systems 36: Annual Conference on
               EMNLP 2023  -  System Demonstrations, Singapore; 2023.   Neural Information Processing Systems 2023, NeurIPS 2023,
               p. 149-160.                                        New Orleans, LA, USA; 2023.
            9.   Shen J, Wang W, Chen C,  et al.  Medtuning: A  New   24.  Wang X, Zhang X, Cao Y, Wang W, Shen C, Huang T. Seggpt:
               Parameter-efficient Tuning Framework for Medical Volumetric   Segmenting Everything in Context. arXiv Preprint arXiv:
               Segmentation. arXiv Preprint arXiv: 2304.10880; 2024.  2304.03284; 2023.
            10.  Zhang K, Liu D.  Customized Segment Anything Model   25.  Oquab M, Darcet T, Moutakanni T. Dinov2: Learning Robust
               for  Medical  Image  Segmentation.  arXiv  preprint arXiv:   Visual  Features  without  Supervision.  arXiv  Preprint  arXiv:
               2304.13785; 2023.                                  2304.07193; 2024.
            11.  Wang H, Guo S, Ye J, et al. Sam-med3d: Towards General-  26.  Wang Y, Zhou W, Mao Y, Li H. Detect any Shadow: Segment
               purpose Segmentation Models for Volumetric Medical Images.   Anything for Video Shadow Detection. arXiv preprint arXiv:
               arXiv preprint arXiv: 2310.15161; 2024.            2305.16698; 2023.
            12.  Wu  J,  Ji W,  Liu Y,  et al.  Medical Sam Adapter: Adapting   27.  Deng R, Cui C, Liu Q, et al. Segment Anything Model (sam)
               Segment Anything Model for Medical Image Segmentation.   for Digital Pathology: Assess Zero-Shot Segmentation on
               arXiv preprint arXiv: 2304.12620; 2023.            Whole Slide Imaging. arXiv preprint arXiv: 2304.04155; 2023.
            13.  Gong S, Zhong Y, Ma W,  et al. 3dsamadapter: Holistic   28.  He S, Bao R, Li J, et al. Accuracy of Segmentanything Model
               adaptation of sam from 2d to 3d for promptable tumor   (sam) in Medical Image Segmentation Tasks. arXiv preprint
               segmentation. Med Image Anal. 2024;98:103324.      arXiv: 2304.09324; 2023.
            14.  Xie B, Tang H, Duan B, Cai D, Yan Y. Masksam: Towards   29.  Hu  C,  Li  X.  When Sam Meets Medical Images: An
               Auto-prompt Sam with Mask Classification for Medical Image   Investigation of Segment Anything Model (Sam) on Multi-
               Segmentation. arXiv preprint arXiv: 2403.14103; 2024.  Phase Liver Tumor Segmentation. arXiv preprint arXiv:
                                                                  2304.08506; 2023.
            15.  Li  C, Khanduri  P, Qiang  Y, Sultan RI,  Chetty  I, Zhu  D.
               Autoprosam: Automated Prompting Sam for 3d Multi-Organ   30.  Zhou T, Zhang Y, Zhou Y, Wu Y, Gong C. Can Sam Segment
               Segmentation. arXiv preprint arXiv: 2308.14936; 2024.  Polyps? arXiv preprint arXiv: 2304.07583; 2023.


            Volume 2 Issue 4 (2025)                        127                          doi: 10.36922/AIH025080010
   128   129   130   131   132   133   134   135   136   137   138