Page 52 - AIH-2-4
P. 52
Artificial Intelligence in Health ViT for neurodegeneration diagnosis
2025 Mar 30]. review of different neuroimaging correlates in mild cognitive
35. Ridnik T, Baruch EB, Noy A, Zelnik-Manor L. ImageNet- impairment and Alzheimer’s disease. Clin Neuroradiol.
21K Pretraining for the Masses. CoRR. 2021. Available from: 2021;31(4):953-967.
https://arxiv.org/abs/2104.10972 [Last accessed on 2025 doi: 10.1007/s00062-021-01057-7
Mar 30].
41. Salmon E, Collette F, Bastin C. Cerebral glucose metabolism
36. Russakovsky O, Deng J, Su H, et al. ImageNet large scale in Alzheimer’s disease. Cortex. 2024;179:50-61.
visual recognition challenge. Int J Comput Vis IJCV.
2015;115(3):211-252. doi: 10.1016/j.cortex.2024.07.004
doi: 10.1007/s11263-015-0816-y 42. Arnold SE, Hyman BT, Van Hoesen GW. Neuropathologic
changes of the temporal pole in Alzheimer’s disease and
37. Google. Vision Transformer (Base-Sized Model). Available pick’s disease. Arch Neurol. 1994;51(2):145-150.
from: https://huggingface.co/google/vit-base-patch32-384
[Last accessed on 2025 Mar 30]. doi: 10.1001/archneur.1994.00540140051014
38. Rorden C, Brett M. Stereotaxic display of brain lesions. 43. Yang C, Liu G, Chen X, Le W. Cerebellum in Alzheimer’s
Behav Neurol. 2000;12(4):191-200. disease and other neurodegenerative diseases: An emerging
doi: 10.1155/2000/421719 research frontier. MedComm (2020). 2024;5(7):e638.
39. Li Y, Wang X, Li Y, et al. Abnormal resting-state functional doi: 10.1002/mco2.638
connectivity strength in mild cognitive impairment 44. Bruchhage MMK, Correia S, Malloy P, Salloway S,
and its conversion to Alzheimer’s disease. Neural Plast. Deoni S. Machine learning classification identifies cerebellar
2016;2016:4680972. contributions to early and moderate cognitive decline in
doi: 10.1155/2016/4680972 Alzheimer’s disease. Front Aging Neurosci. 2020;12:524024.
40. Talwar P, Kushwaha S, Chaturvedi M, Mahajan V. Systematic doi: 10.3389/fnagi.2020.524024
Volume 2 Issue 4 (2025) 46 doi: 10.36922/AIH025140026

