Page 51 - AIH-2-4
P. 51

Artificial Intelligence in Health                                       ViT for neurodegeneration diagnosis



               from:   https://www.mayoclinic.org/diseases/conditions/  Related to Assistive Environments. PETRA ’22. United States:
               mild/cognitive/impairment/symptoms/causes/syc-     Association for Computing Machinery; 2022. p. 463-468.
               20354578 [Last accessed on 2025 Mar 30].
                                                                   doi: 10.1145/3529190.3534754
            14.  Simonyan K, Zisserman A.  Very Deep Convolutional   25.  Sarraf S, Sarraf A, DeSouza DD, Anderson JAE, Kabia M,
               Networks for Large-Scale Image Recognition. [ArXiv   The Alzheimer’s Disease Neuroimaging Initiative. OViTAD:
               Preprint]; 2014.                                   Optimized vision transformer to predict various stages of
            15.  Zeiler MD, Fergus R. Visualizing and understanding   Alzheimer’s disease using resting-State fMRI and structural
               convolutional networks. In:  Computer Vision–ECCV   MRI data. Brain Sci. 2023;13(2):260.
               2014:  13   European Conference, Zurich, Switzerland,       doi: 10.3390/brainsci13020260
                      th
               September 6-12, 2014, Proceedings, Part  I 13. Berlin:
               Springer; 2014. p. 818-833.                     26.  Hoang GM, Kim UH, Kim JG. Vision transformers for the
                                                                  prediction of mild cognitive impairment to Alzheimer’s
            16.  Szegedy  C, Vanhoucke  V, Ioffe  S, Shlens J,  Wojna Z.   disease progression using mid-sagittal sMRI.  Front Aging
               Rethinking the inception architecture for computer vision.   Neurosci. 2023;15:1102869.
               In: Proceedings of the IEEE Conference on Computer Vision
               and Pattern Recognition. 2016. p. 2818-2826.        doi: 10.3389/fnagi.2023.1102869
            17.  Simonyan K, Vedaldi A, Zisserman A.  Deep Inside   27.  Aghdam MA, Bozdag S, Saeed F, Alzheimer’s Disease
               Convolutional  Networks:  Visualising  Image Classification   Neuroimaging Initiative. PVTAD: Alzheimer’s disease
               Models and Saliency Maps. [ArXiv Preprint]; 2013.  diagnosis using pyramid vision transformer applied to white
                                                                  matter of T1-weighted structural MRI data. Proc IEEE Int
            18.  Lozupone  G,  Bria  A,  Fontanella F,  Meijer  FJ,  De   Symp Biomed Imaging. 2024;2024:10.
               Stefano C.  AXIAL: Attention-Based Explainability for
               Interpretable Alzheimer’s Localized Diagnosis using 2D CNNs       doi: 10.1109/isbi56570.2024.10635541
               on 3D MRI Brain Scans. [ArXiv Preprint]; 2024.  28.  Wang W, Xie E, Li X,  et al. Pyramid vision transformer:
            19.  Khatri U, Kwon GR. Explainable vision transformer with   A  versatile backbone for dense prediction without
               self-supervised learning to predict Alzheimer’s disease   convolutions. In: Proceedings of the IEEE/CVF International
               progression using  18F-FDG  PET.  Bioengineering (Basel).   Conference on Computer Vision. United States: IEEE; 2021.
               2023;10(10):1225.                                  p. 568-578.
                doi: 10.3390/bioengineering10101225            29.  Kushol R, Masoumzadeh A, Huo D, Kalra S, Yang
                                                                  YH. Addformer: Alzheimer’s disease detection from
            20.  Shin H, Jeon S, Seol Y, Kim S, Kang D. Vision transformer   structural MRI using fusion transformer. In:  2022 IEEE
               approach for classification of Alzheimer’s disease using   19  International Symposium on Biomedical Imaging (ISBI).
                                                                    th
               18f-florbetaben brain images. Appl Sci. 2023;13(6):3453.  IEEE; 2022. p. 1-5.
                doi: 10.3390/app13063453                           doi: 10.1109/ISBI52829.2022.9761421
            21.  The  National Institutes  of  Health.  How Biomarkers Help   30.  Shah SMAH, Khan MQ, Rizwan A, Jan SU, Samee NA,
               Diagnose Dementia. Available from: https://www.nia.nih.  Jamjoom MM. Computer-aided diagnosis of Alzheimer’s
               gov/health/alzheimers/symptoms/and/diagnosis/how/  disease and neurocognitive disorders with multimodal
               biomarkers-help-diagnose-dementia  [Last  accessed  on   Bi-vision transformer (BiViT).  Pattern  Anal Appl.
               2025 Mar 30].                                      2024;27(3):76.

            22.  Xing X, Liang G, Zhang Y, Khanal S, Lin AL, Jacobs N.       doi: 10.1007/s10044-024-01297-6
               Advit: vision transformer on multi-modality pet images for
               Alzheimer disease diagnosis. In: 2022 IEEE 19  International   31.  The Alzheimer’s Disease Neuroimaging Initiative. ADNI
                                                th
               Symposium  on  Biomedical  Imaging  (ISBI). United States:   Documentation. Available from: https://adni.loni.usc.
               IEEE; 2022. p. 1-4.                                edu/help-faqs/adni-documentation [Last accessed on
                                                                  2025 Mar 30].
                doi: 10.1109/ISBI52829.2022.9761584
                                                               32.  The MathWorks Inc.  Matlab R; 2016a. Available  from:
            23.  Odusami M, Maskeliūnas R, Damaševičius R. Pixel-level   https://www.mathworks.com [Last accessed on 2025 Mar
               fusion approach with vision transformer for early detection   30].
               of Alzheimer’s disease. Electronics. 2023;12(5):1218.
                                                               33.  UCL Queen Square Institute of Neurology.  Statistical
                doi: 10.3390/electronics12051218                  Parametric Mapping. Available from: https://www.fil.ion.ucl.
            24.  Lyu Y, Yu X, Zhu D, Zhang L. Classification of Alzheimer’s   ac.uk/spm [Last accessed on 2025 Mar 30].
               disease via vision transformer: Classification of Alzheimer’s   34.  Wolf T, Debut L, Sanh V, et al. HuggingFace’s Transformers:
               disease via vision transformer. In:  Proceedings of the   State-of-the-Art Natural Language Processing; 2020. Available
               15   International Conference on PErvasive Technologies   from: https://arxiv.org/abs/1910.03771 [Last accessed on
                 th

            Volume 2 Issue 4 (2025)                         45                          doi: 10.36922/AIH025140026
   46   47   48   49   50   51   52   53   54   55   56