Page 51 - AIH-2-4
P. 51
Artificial Intelligence in Health ViT for neurodegeneration diagnosis
from: https://www.mayoclinic.org/diseases/conditions/ Related to Assistive Environments. PETRA ’22. United States:
mild/cognitive/impairment/symptoms/causes/syc- Association for Computing Machinery; 2022. p. 463-468.
20354578 [Last accessed on 2025 Mar 30].
doi: 10.1145/3529190.3534754
14. Simonyan K, Zisserman A. Very Deep Convolutional 25. Sarraf S, Sarraf A, DeSouza DD, Anderson JAE, Kabia M,
Networks for Large-Scale Image Recognition. [ArXiv The Alzheimer’s Disease Neuroimaging Initiative. OViTAD:
Preprint]; 2014. Optimized vision transformer to predict various stages of
15. Zeiler MD, Fergus R. Visualizing and understanding Alzheimer’s disease using resting-State fMRI and structural
convolutional networks. In: Computer Vision–ECCV MRI data. Brain Sci. 2023;13(2):260.
2014: 13 European Conference, Zurich, Switzerland, doi: 10.3390/brainsci13020260
th
September 6-12, 2014, Proceedings, Part I 13. Berlin:
Springer; 2014. p. 818-833. 26. Hoang GM, Kim UH, Kim JG. Vision transformers for the
prediction of mild cognitive impairment to Alzheimer’s
16. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. disease progression using mid-sagittal sMRI. Front Aging
Rethinking the inception architecture for computer vision. Neurosci. 2023;15:1102869.
In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2016. p. 2818-2826. doi: 10.3389/fnagi.2023.1102869
17. Simonyan K, Vedaldi A, Zisserman A. Deep Inside 27. Aghdam MA, Bozdag S, Saeed F, Alzheimer’s Disease
Convolutional Networks: Visualising Image Classification Neuroimaging Initiative. PVTAD: Alzheimer’s disease
Models and Saliency Maps. [ArXiv Preprint]; 2013. diagnosis using pyramid vision transformer applied to white
matter of T1-weighted structural MRI data. Proc IEEE Int
18. Lozupone G, Bria A, Fontanella F, Meijer FJ, De Symp Biomed Imaging. 2024;2024:10.
Stefano C. AXIAL: Attention-Based Explainability for
Interpretable Alzheimer’s Localized Diagnosis using 2D CNNs doi: 10.1109/isbi56570.2024.10635541
on 3D MRI Brain Scans. [ArXiv Preprint]; 2024. 28. Wang W, Xie E, Li X, et al. Pyramid vision transformer:
19. Khatri U, Kwon GR. Explainable vision transformer with A versatile backbone for dense prediction without
self-supervised learning to predict Alzheimer’s disease convolutions. In: Proceedings of the IEEE/CVF International
progression using 18F-FDG PET. Bioengineering (Basel). Conference on Computer Vision. United States: IEEE; 2021.
2023;10(10):1225. p. 568-578.
doi: 10.3390/bioengineering10101225 29. Kushol R, Masoumzadeh A, Huo D, Kalra S, Yang
YH. Addformer: Alzheimer’s disease detection from
20. Shin H, Jeon S, Seol Y, Kim S, Kang D. Vision transformer structural MRI using fusion transformer. In: 2022 IEEE
approach for classification of Alzheimer’s disease using 19 International Symposium on Biomedical Imaging (ISBI).
th
18f-florbetaben brain images. Appl Sci. 2023;13(6):3453. IEEE; 2022. p. 1-5.
doi: 10.3390/app13063453 doi: 10.1109/ISBI52829.2022.9761421
21. The National Institutes of Health. How Biomarkers Help 30. Shah SMAH, Khan MQ, Rizwan A, Jan SU, Samee NA,
Diagnose Dementia. Available from: https://www.nia.nih. Jamjoom MM. Computer-aided diagnosis of Alzheimer’s
gov/health/alzheimers/symptoms/and/diagnosis/how/ disease and neurocognitive disorders with multimodal
biomarkers-help-diagnose-dementia [Last accessed on Bi-vision transformer (BiViT). Pattern Anal Appl.
2025 Mar 30]. 2024;27(3):76.
22. Xing X, Liang G, Zhang Y, Khanal S, Lin AL, Jacobs N. doi: 10.1007/s10044-024-01297-6
Advit: vision transformer on multi-modality pet images for
Alzheimer disease diagnosis. In: 2022 IEEE 19 International 31. The Alzheimer’s Disease Neuroimaging Initiative. ADNI
th
Symposium on Biomedical Imaging (ISBI). United States: Documentation. Available from: https://adni.loni.usc.
IEEE; 2022. p. 1-4. edu/help-faqs/adni-documentation [Last accessed on
2025 Mar 30].
doi: 10.1109/ISBI52829.2022.9761584
32. The MathWorks Inc. Matlab R; 2016a. Available from:
23. Odusami M, Maskeliūnas R, Damaševičius R. Pixel-level https://www.mathworks.com [Last accessed on 2025 Mar
fusion approach with vision transformer for early detection 30].
of Alzheimer’s disease. Electronics. 2023;12(5):1218.
33. UCL Queen Square Institute of Neurology. Statistical
doi: 10.3390/electronics12051218 Parametric Mapping. Available from: https://www.fil.ion.ucl.
24. Lyu Y, Yu X, Zhu D, Zhang L. Classification of Alzheimer’s ac.uk/spm [Last accessed on 2025 Mar 30].
disease via vision transformer: Classification of Alzheimer’s 34. Wolf T, Debut L, Sanh V, et al. HuggingFace’s Transformers:
disease via vision transformer. In: Proceedings of the State-of-the-Art Natural Language Processing; 2020. Available
15 International Conference on PErvasive Technologies from: https://arxiv.org/abs/1910.03771 [Last accessed on
th
Volume 2 Issue 4 (2025) 45 doi: 10.36922/AIH025140026

