Page 95 - AIH-2-4
P. 95
Artificial Intelligence in Health Federated learning health stack against pandemics
learning in healthcare 4.0 with blockchain. IEEE Trans Ind 26. ℤhou P, Fang P, Hui P. Loss Tolerant Federated Learning.
Inform. 2022;19(7):7936-7945. [Preprint]; 2021.
doi: 10.1109/TII.2022.3214998 doi: 10.48550/arXiv.2105.03591
16. Li G, Hu Y, ℤhang M, et al. FedHiSyn: A hierarchical 27. Yu Q, Li S, Raviv N, Kalan SMM, Soltanolkotabi M,
synchronous federated learning framework for resource and Avestimehr SA. Lagrange coded computing: Optimal design
data heterogeneity. In: Proceedings of the 51 International for resiliency, security, and privacy. In: 22 International
nd
st
Conference on Parallel Processing. United States: Association Conference on Artificial Intelligence and Statistics. [Preprint];
for Computing Machinery; 2022. p. 1-11. 2019. p. 1215-1225.
doi: 10.1145/3545008.3545065 doi: 10.48550/arXiv.1806.00939
17. Wang B, Li H, Guo Y, Wang J. PPFLHE: A privacy-preserving 28. So J, Güler B, Avestimehr AS. Byzantine-resilient
federated learning scheme with homomorphic encryption secure federated learning. IEEE J Select Areas Commun.
for healthcare data. Appl Soft Comput. 2023;146:110677. 2020;39(7):2168-2181.
doi: 10.1016/j.asoc.2023.110677 doi: 10.48550/arXiv.2007.11115
18. Ooi MPL, Sohail S, Huang VG, et al. Measurement and 29. Gogineni AK, Hitesh M, Jha PK, Sen SS, Das S, Sahu KK.
applications: Exploring the challenges and opportunities of Deep learning on chest X-ray and computed tomography
hierarchical federated learning in sensor applications. IEEE scans for detection of COVID-19 as a part of a network-
Instrum Meas Mag. 2023;26(9):21-31. centric digital health stack for future pandemics. Artif Intell
Health. 2024;2:29-41.
doi: 10.1109/MIM.2023.10328671
doi: 10.36922/aih.2888
19. Tripathy R, Meshram J, Bera P. HalfFedLearn: A secure
federated learning with local data partitioning and 30. He K, ℤhang X, Ren S, Sun J. Deep residual learning for
homomorphic encryption. Fut Gener Comput Syst. image recognition. In: IEEE Conference on Computer Vision
2025;171:107858. and Pattern Recognition (CVPR). United States: IEEE; 2016.
p. 770-778.
doi: 10.1016/j.future.2025.107858
doi: 10.1109/cvpr.2016.90
20. Cao X, Fang M, Liu J, Gong Nℤ. Fltrust: Byzantine-Robust
Federated Learning Via Trust Bootstrapping. United States: 31. Hu J, Shen L, Albanie S, Sun G, Wu E. Squeeze-and-Excitation
Cornell University; 2020. Networks. United States: Cornell University; 2017.
doi: 10.48550/arXiv.2012.13995 doi: 10.48550/arxiv.1709.01507
21. Fung C, Yoon CJ, Beschastnikh I. The limitations of 32. Xie S, Girshick R, Dollár P, Tu ℤ, He K. Aggregated residual
federated learning in sybil settings. In: 23 International transformations for deep neural networks. In: IEEE
rd
Symposium on Research in Attacks, Intrusions and Defenses Conference on Computer Vision and Pattern Recognition
(RAID). 2020. p. 301-316. (CVPR). Honolulu, HI, USA: IEEE; 2017. p. 5987-5995.
22. Adilova L, Rosenzweig J, Kamp M. Information-Theoretic doi: 10.1109/CVPR.2017.634
Perspective of Federated Learning. [Preprint]; 2019. 33. Huang G, Liu ℤ, Van Der Maaten L, Weinberger KQ. Densely
doi: 10.48550/arXiv.1911.07652 connected convolutional networks. In: IEEE Conference on
Computer Vision and Pattern Recognition. United States:
23. Jin W, Yao Y, Han S, et al. FedML-HE: An Efficient IEEE; 2017. p. 4700-4708.
Homomorphic-Encryption-Based Privacy-Preserving
Federated Learning System. United States: Cornell doi: 10.1109/CVPR.2017.243
University; 2023. 34. Tan M, Le QV. EfficientNet: Rethinking Model Scaling for
doi: 10.48550/arXiv.2303.10837 Convolutional Neural Networks; 2019. Available from: https://
arxiv.org/pdf/1905.11946 [Last accessed on 2024 Dec 18].
24. Mozaffari H, Choudhary S, Houmansadr A. Fake or
compromised? making sense of malicious clients in doi: 10.48550/arXiv.1905.11946
federated learning. In: European Symposium on Research in 35. Simon M, Rodner E, Denzler J. ImageNet Pre-trained Models
Computer Security. 2024. p. 187-207. with Batch Normalization; 2016. Available from: https://
doi: 10.48550/arXiv.2403.06319 arxiv.org/pdf/1612.01452 [Last accessed on 2024 Dec 18].
doi: 10.48550/arXiv.1612.01452
25. ℤiller A, Mueller TT, Stieger S, et al. Reconciling privacy
and accuracy in AI for medical imaging. Nat Mach Intell. 36. Smith LN. Cyclical Learning Rates for Training Neural
2024;6(7):764-774. Networks. Piscataway: IEEE Xplore; 2017. p. 464-472.
doi: 10.1038/s42256-024-00858-y doi: 10.1109/WACV.2017.58
Volume 2 Issue 4 (2025) 89 doi: 10.36922/AIH025080013

