Page 95 - AIH-2-4
P. 95

Artificial Intelligence in Health                            Federated learning health stack against pandemics



               learning in healthcare 4.0 with blockchain. IEEE Trans Ind   26.  ℤhou P, Fang P, Hui P.  Loss Tolerant Federated Learning.
               Inform. 2022;19(7):7936-7945.                      [Preprint]; 2021.
               doi: 10.1109/TII.2022.3214998                      doi: 10.48550/arXiv.2105.03591
            16.  Li G, Hu Y,  ℤhang M,  et  al. FedHiSyn: A  hierarchical   27.  Yu  Q,  Li  S,  Raviv  N,  Kalan  SMM,  Soltanolkotabi  M,
               synchronous federated learning framework for resource and   Avestimehr SA. Lagrange coded computing: Optimal design
               data heterogeneity. In: Proceedings of the 51  International   for resiliency, security, and privacy. In:  22   International
                                                                                                  nd
                                                st
               Conference on Parallel Processing. United States: Association   Conference on Artificial Intelligence and Statistics. [Preprint];
               for Computing Machinery; 2022. p. 1-11.            2019. p. 1215-1225.
               doi: 10.1145/3545008.3545065                       doi: 10.48550/arXiv.1806.00939
            17.  Wang B, Li H, Guo Y, Wang J. PPFLHE: A privacy-preserving   28.  So J, Güler B, Avestimehr AS. Byzantine-resilient
               federated learning scheme with homomorphic encryption   secure federated learning.  IEEE J Select Areas Commun.
               for healthcare data. Appl Soft Comput. 2023;146:110677.  2020;39(7):2168-2181.
               doi: 10.1016/j.asoc.2023.110677                    doi: 10.48550/arXiv.2007.11115
            18.  Ooi  MPL,  Sohail  S,  Huang  VG,  et al.  Measurement  and   29.  Gogineni AK, Hitesh M, Jha PK, Sen SS, Das S, Sahu KK.
               applications: Exploring the challenges and opportunities of   Deep learning on chest X-ray and computed tomography
               hierarchical federated learning in sensor applications. IEEE   scans for detection of COVID-19 as a part of a network-
               Instrum Meas Mag. 2023;26(9):21-31.                centric digital health stack for future pandemics. Artif Intell
                                                                  Health. 2024;2:29-41.
               doi: 10.1109/MIM.2023.10328671
                                                                  doi: 10.36922/aih.2888
            19.  Tripathy R, Meshram J, Bera P. HalfFedLearn: A  secure
               federated learning with  local  data partitioning  and   30.  He K,  ℤhang X,  Ren S,  Sun  J. Deep residual learning for
               homomorphic  encryption.  Fut Gener Comput Syst.   image recognition. In: IEEE Conference on Computer Vision
               2025;171:107858.                                   and Pattern Recognition (CVPR). United States: IEEE; 2016.
                                                                  p. 770-778.
               doi: 10.1016/j.future.2025.107858
                                                                  doi: 10.1109/cvpr.2016.90
            20.  Cao X, Fang M, Liu J, Gong Nℤ. Fltrust: Byzantine-Robust
               Federated Learning Via Trust Bootstrapping. United States:   31.  Hu J, Shen L, Albanie S, Sun G, Wu E. Squeeze-and-Excitation
               Cornell University; 2020.                          Networks. United States: Cornell University; 2017.
               doi: 10.48550/arXiv.2012.13995                     doi: 10.48550/arxiv.1709.01507
            21.  Fung C, Yoon CJ, Beschastnikh I. The limitations of   32.  Xie S, Girshick R, Dollár P, Tu ℤ, He K. Aggregated residual
               federated learning in  sybil  settings.  In:  23   International   transformations for deep neural networks. In:  IEEE
                                               rd
               Symposium on Research in Attacks, Intrusions and Defenses   Conference on Computer Vision and Pattern Recognition
               (RAID). 2020. p. 301-316.                          (CVPR). Honolulu, HI, USA: IEEE; 2017. p. 5987-5995.
            22.  Adilova L, Rosenzweig J, Kamp M.  Information-Theoretic      doi: 10.1109/CVPR.2017.634
               Perspective of Federated Learning. [Preprint]; 2019.  33.  Huang G, Liu ℤ, Van Der Maaten L, Weinberger KQ. Densely
               doi: 10.48550/arXiv.1911.07652                     connected convolutional networks. In: IEEE Conference on
                                                                  Computer Vision and Pattern Recognition. United States:
            23.  Jin  W,  Yao  Y,  Han  S,  et al.  FedML-HE: An Efficient   IEEE; 2017. p. 4700-4708.
               Homomorphic-Encryption-Based  Privacy-Preserving
               Federated Learning System.  United  States:  Cornell      doi: 10.1109/CVPR.2017.243
               University; 2023.                               34.  Tan M, Le QV.  EfficientNet: Rethinking Model Scaling for
               doi: 10.48550/arXiv.2303.10837                     Convolutional Neural Networks; 2019. Available from: https://
                                                                  arxiv.org/pdf/1905.11946 [Last accessed on 2024 Dec 18].
            24.  Mozaffari H, Choudhary S, Houmansadr A. Fake or
               compromised? making sense of malicious clients in      doi: 10.48550/arXiv.1905.11946
               federated learning. In: European Symposium on Research in   35.  Simon M, Rodner E, Denzler J. ImageNet Pre-trained Models
               Computer Security. 2024. p. 187-207.               with Batch Normalization; 2016. Available from: https://
               doi: 10.48550/arXiv.2403.06319                     arxiv.org/pdf/1612.01452 [Last accessed on 2024 Dec 18].
                                                                  doi: 10.48550/arXiv.1612.01452
            25.  ℤiller A, Mueller TT, Stieger S,  et al. Reconciling privacy
               and accuracy in AI for medical imaging. Nat Mach Intell.   36.  Smith LN.  Cyclical Learning Rates for Training Neural
               2024;6(7):764-774.                                 Networks. Piscataway: IEEE Xplore; 2017. p. 464-472.
               doi: 10.1038/s42256-024-00858-y                    doi: 10.1109/WACV.2017.58


            Volume 2 Issue 4 (2025)                         89                          doi: 10.36922/AIH025080013
   90   91   92   93   94   95   96   97   98   99   100