Page 94 - AIH-2-4
P. 94
Artificial Intelligence in Health Federated learning health stack against pandemics
Acknowledgments people-margins-suffer-most [Last accessed on 2024 Dec 14].
None. doi: 10.1126/science.abc7832
5. Pathak AD, Saran D, Mishra S, Hitesh M, Bathula S,
Funding Sahu KK. Smart war on COVID-19 and global pandemics:
None. Integrated AI and blockchain ecosystem. In: Computational
Modeling and Data Analysis in COVID-19 Research. United
Conflict of interest States: CRC Press; 2021. p. 67-94.
The authors declare that they have no competing interests. doi: 10.1201/9781003137481-5
6. McMahan B, Moore E, Ramage D, Hampson S, Arcas BA.
Author contributions Communication-efficient learning of deep networks from
Conceptualization: Kisor Kumar Sahu decentralized data. In: Artificial Intelligence and Statistics.
Formal analysis: All authors Hamburg: Statista; 2017. p. 1273-1282.
Investigation: Rojalini Tripathy doi: 10.48550/arXiv.1602.05629
Methodology: All authors 7. Yurdem B, Kuzlu M, Gullu MK, Catak FO, Tabassum M.
Visualization: All authors Federated learning: Overview, strategies, applications, tools
Writing – original draft: All authors and future directions. Heliyon. 2024;10:e38137.
Writing – review & editing: All authors doi: 10.1016/j.heliyon.2024.e38137
Ethics approval and consent to participate
8. Nguyen DC, Pham QV, Pathirana PN, et al. Federated
Not applicable. learning for smart healthcare: A survey. ACM Comput Surv.
2022;55(3):1-37.
Consent for publication
doi: 10.1145/3501296
Not applicable. 9. Rieke N, Hancox J, Li W, et al. The future of digital health
Availability of data with federated learning. NPJ Digit Med. 2020;3(1):119.
doi: 10.1038/s41746-020-00323-1
Data are available at the following resource: Deng, L. The
MNIST database of handwritten digit images for machine 10. Sheller MJ, Edwards B, Reina GA, et al. Federated learning
learning research. IEEE signal processing magazine;2012. in medicine: Facilitating multi-institutional collaborations
29(6), 141-142. doi: 10.1109/MSP.2012.2211477 and without sharing patient data. Sci Rep. 2020;10(1):12598.
code can be shared upon reasonable request over email: doi: 10.1038/s41598-020-69250-1
kisorsahu@iitbbs.ac.in. 11. Sun T, Li D, Wang B. Decentralized federated averaging.
References IEEE Trans Pattern Anal Mach Intell. 2022;45(4):4289-4301.
doi: 10.48550/arXiv.2104.11375
1. World Health Organization. COVID-19 Deaths. WHO
COVID-19 Dashboard. World Health Organization Data; 12. Korzun DG. Internet of things meets mobile health systems
2023. Available from: https://data.who.int/dashboards/ in smart spaces: An overview. In: Internet of Things and Big
covid19/deathss [Last accessed on 2024 Dec 14]. Data Technologies for Next Generation Healthcare. Berlin:
Springer Nature; 2017. p. 111-129.
2. Roser M. The Spanish Flu: The Global Impact of the Largest
Influenza Pandemic in History. Our World in Data; 2020. doi: 10.1007/978-3-319-49736-5_6
Available from: https://ourworldindata.org/spanish/flu- 13. Velichko A, Korzun D, Meigal A. Artificial neural networks
largest-influenza-pandemic-in-history [Last accessed on for iot-enabled smart applications: Recent trends. Sensors.
2024 Dec 14].
2023;23(10):4853.
3. Mordechai L, Eisenberg M, Newfield TP, Izdebski A, Kay JE, doi: 10.3390/s23104853
Poinar H. The justinianic plague: An inconsequential
pandemic. Proc Natl Acad Sci U S A. 2019;116:25546-25554. 14. Xia Y, Hofmeister C, Egger M, Bitar R. Byzantine-Resilient
Secure Aggregation for Federated Learning without Privacy
doi: 10.1073/pnas.1903797116
Compromises. United States: IEEE; 2024.
4. Wade L. From Black Death to Fatal Flu, Past Pandemics Show
why People on the Margins Suffer Most. Science Magazine; doi: 10.48550/arXiv.2405.08698
2020. Available from: https://www.science.org/content/ 15. Stephanie V, Khalil I, Atiquzzaman M, Yi X. Trustworthy
article/black-death-fatal-flu-past-pandemics-show-why- privacy-preserving hierarchical ensemble and federated
Volume 2 Issue 4 (2025) 88 doi: 10.36922/AIH025080013

