Page 97 - AIH-2-4
P. 97

Artificial Intelligence in Health                            Federated learning health stack against pandemics



               doi: 10.1109/ICKECS61492.2024.10616691             Proceedings of the AAAI Conference on Artificial Intelligence.
                                                                  Vol. 6. Washington, DC: AAAI Press; 2023. p. 7314-7322.
            57.  Deng L. The mnist database of handwritten digit images
               for  machine  learning  research.  IEEE Sign Process Mag.      doi: 10.48550/arXiv.2212.02758
               2012;29(6):141-142.
                                                               65.  Babar M, Qureshi B, Koubaa A. Investigating the impact
               doi: 10.1109/MSP.2012.2211477                      of data heterogeneity on the performance of federated
                                                                  learning algorithm using medical imaging.  PLoS One.
            58.  Jimenez GM, Solans D, Heikkila M,  et al.  Non-IID Data
               in  Federated  Learning:  A  Survey  with  Taxonomy,  Metrics,   2024;19(5):e0302539.
               Methods, Frameworks and Future Directions. United States:      doi: 10.1371/journal.pone.0302539
               Cornell University; 2024.
                                                               66.  ℤhao Y, Li M, Lai L, Suda N, Civin D, Chandra V. Federated
               doi: 10.48550/arXiv.2411.12377                     Learning with Non-Iid Data. United States: IEEE; 2018.
            59.  Ye  M,  Fang  X,  Du  B,  Yuen  PC,  Tao  D.  Heterogeneous      doi: 10.48550/arXiv.1806.00582
               federated learning: State-of-the-art and research challenges.   67.  Chang Q, Yan  ℤ,  ℤhou M,  et al. Mining multi-center
               ACM Comput Surv. 2023;56(3):1-44.
                                                                  heterogeneous medical data with distributed synthetic
               doi: 10.48550/arXiv.2307.10616                     learning. Nat Commun. 2023;14(1):5510.
            60.  Gao D, Yao X, Yang Q. A Survey on Heterogeneous Federated      doi: 10.1038/s41467-023-40687-y
               Learning. United States: Cornell University; 2022.
                                                               68.  Kossen T, Hirzel MA, Madai VI,  et al. Toward sharing
               doi: 10.48550/arXiv.2210.04505                     brain images: Differentially private TOF-MRA images with
                                                                  segmentation labels using generative adversarial networks.
            61.  Müller-Franzes G, Niehues JM, Khader F, et al. A multimodal
               comparison of latent denoising diffusion probabilistic   Front Artif Intell. 2022;5:813842.
               models and generative adversarial networks for medical      doi: 10.3389/frai.2022.813842
               image synthesis. Sci Rep. 2023;13:12098.
                                                               69.  Jiale ℤH, Chengcheng ℤH, Xiaobing SU, et al. Membership
               doi: 10.1038/s41598-023-39278-0                    inference attack and defense method in federated learning
                                                                  based on GAN[J]. J Commun. 2023;44(5):193-205.
            62.  ℤadeh FS, Molani S, Orouskhani M, Rezaei M, Shafiei M,
               Abbasi H. Generative Adversarial Networks for Brain Images      doi: 10.11959/j.issn.1000-436x.2023094
               Synthesis: A Review. United States: Cornell University; 2023.
                                                               70.  Xia J, ℤhang Y, Yue ℤ, Hu M, Wei X, Chen M. HierarchyFL:
               doi: 10.48550/arXiv.2305.15421                     Heterogeneous Federated Learning via Hierarchical Self-
                                                                  Distillation. United States: Cornell University; 2022.
            63.  Legler T, Hegiste V, Anwar A, Ruskowski M. Addressing
               heterogeneity in federated learning: challenges and solutions      doi: 10.48550/arXiv.2212.02006
               for a shared production environment. Procedia Comput Sci.   71.  Yang H, Li J, Hao M, ℤhang W, He H, Sangaiah AK. An
               2025;253:2831-2840.
                                                                  efficient personalized federated learning approach in
               doi: 10.48550/arXiv.2408.09556                     heterogeneous environments: A  reinforcement learning
                                                                  perspective. Sci Rep. 2024;14:28877.
            64.  Dai Y, Chen ℤ, Li J, Heinecke S, Sun L, Xu R. Tackling data
               heterogeneity in federated learning with class prototypes. In:      doi: 10.1038/s41598-024-80048-3


























            Volume 2 Issue 4 (2025)                         91                          doi: 10.36922/AIH025080013
   92   93   94   95   96   97   98   99   100   101   102