Page 82 - AJWEP-22-4
P. 82
Tanko, et al.
C, Roberts JD. In: Moore PD, Chapman SB, editors. of phenol from aqueous media. J Mediterr Ecol.
Methods in Plant Ecology. 2 ed. Oxford: Black well 2016;14:55-62.
nd
Scientific Publications; 1986. p. 411-466. 37. Khandare RV, Govindwar SP. Phytoremediation of textile
26. Allen SE. Chemical Analysis of Ecological Materials. dyes and effluents: Current scenario and future prospects.
London: Black Well Scientific Publications; 1989. Biotechnol Adv. 2015;33(8):1697-1714.
27. Boulos L. Flora of Egypt. Vol. 1-4. Cairo, Egypt: Al doi: 10.1016/j.biotechadv.2015.09.003
Hadara Publishing; 1999. 38. Wickramasinghe S, Jayawardana CK. Potential of
28. SPSS Inc. SPSS10.0 for Windows: Statistics. Chicago, aquatic macrophytes Eichhornia crassipes, Pistia
IL: SPSS Inc.; 1999. stratiotes, in treatment of textile wastewater. J Water
29. Justin LD, Olukanni DO, Babaremu KO. Performance Secur. 2018;4:2018.001.
assessment of local aquatic macrophytes for domestic doi: 10.15544/jws.2018.001
wastewater treatment in Nigerian communities: A review. 39. Ugya AY, Imam TS, Tahir SM. The role of
Heliyon. 2022;8(8):e10093. phytoremediation in remediation of industrial wastes.
doi: 10.1016/j.heliyon.2022.e10093 World J Pharm Res. 2016;5(12):1403-1430.
30. Chen M, Zhang LL, Li J, He XJ, Cai JC. Bioaccumulation doi: 10.20959/wjpr201612-7544
and tolerance characteristics of a submerged plant 40. Rezania S, Mat Taib S, Md Din MF, Dahalan FA, Hesam
(Ceratophyllum demerssum L.) Exposed to toxic metal Kamyab H. Comprehensive review on phytotechnology:
lead. Ecotoxicol Environ Saf. 2015;122:313-321. Heavy metals removal by diverse aquatic plants species
doi: 10.1016/j.ecoenv.2015.08.007 from wastewater. J Hazard Mater. 2016;318:587-599.
31. Pilon-Smits E. Phytoremediation. Annu Rev Plant Biol. doi: 10.1016/j.jhazmat.2016.07.053
2005;56:15-39.
doi: 10.1146/annurev.arplant.56.032604.144214 41. Vijayaraghavan K, Balasubramanian R. Is biosorption
of
metal-bearing
decontamination
suitable
for
32. Daud MK, Ali S, Abbas Z, et al. Potential of duckweed
(Lemna minor) for the phytoremediation of landfill wastewater? A critical review on the state-of-the-art
leachate. J Chem. 2018;2018:3951540. biosorption processes and future directions. J Environ
doi: 10.1155/2018/3951540 Manage. 2015;160:283-296.
33. Mosleh Y, Nafea E, Heham S, Mofeed J. Heavy metals doi: 10.1016/j.jenvman.2015.06.030
removal from industrial wastewater using dry green 42. Sharma S, Singh B, Manchanda VK. Phytoremediation:
macro alga Ulva lactuca Linnaeus. Egypt J Aquat Biol role of terrestrial plants and aquatic macrophytes in
Fish. 2023;27(2):343-360. the remediation of radionuclides and heavy metal
doi: 10.21608/ejabf.2023.292265 contaminated soil and water. Environ Sci Pollut Res Int.
34. Amin MT, Alazba AA, Manzoor U. Review of removal 2015;22:946-962.
of pollutants from water/wastewater using different types doi: 10.1007/s11356-014-3635-8
of nanomaterials. Adv Mater Sci Eng. 2014;2:24. 43. Bhatia M, Goyal D. Analyzing remediation potential of
doi: 10.1155/2014/825910 wastewater through wetland plants: A review. Environ
35. Patel DK, Kanungo VK. Phytoremediation potential Prog Sustain Energy. 2014;33:9-27.
of duckweed (Lemna minor L: A tiny aquatic plant) in doi: 10.1002/ep.11822
the removal of pollutants from domestic wastewater 44. Bauddh K, Singh K, Singh B, Singh RP. Ricinus
with special reference to nutrients. Int Q J Life Sci. communis: A robust plant for bio-energy and
2010;5(3):355-358. phytoremediation of toxic metals from contaminated
36. Younis AM, Nafea EM, Mosleh YYI, Hefnawy MS. soil. Ecol Eng. 2015;84:640-652.
Low cost biosorbent (Lemna gibba L.) for the removal doi: 10.1016/j.ecoleng.2015.09.038
Volume 22 Issue 4 (2025) 74 doi: 10.36922/AJWEP025150105

