Page 123 - AJWEP-v22i3
P. 123

Farming technologies and food yields in Pakistan

                33.  Soko NN,  Kaitibie  S, Ratna NN.  Does institutional      doi: 10.1016/j.atech.2024.100704
                   quality affect the impact of public agricultural spending   44.  Sweet LB,  Athanasiadis IN, van Bree R,  et al.
                   on food security in Sub-Saharan Africa and Asia? Glob   Transdisciplinary coordination is essential for advancing
                   Food Sec. 2023;36:100668.                            agricultural modeling with machine learning. One Earth.
                   doi: 10.1016/j.gfs.2022.100668                       2025;8(4):101233.
                34.  Peng J, Zhao  Z, Liu  D. Impact  of agricultural      doi: 10.1016/j.oneear.2025.101233
                   mechanization on agricultural production, income, and   45.  World   Bank.   World   Development   Indicators.
                   mechanism:  Evidence  from Hubei province, China.    Washington, D.C.:  World Bank; 2023.  Available
                   Front Environ Sci. 2022;10:838686.                   from:   https://databank.worldbank.org/source/world-
                   doi: 10.3389/fenvs.2022.838686                       development-indicators [Last accessed on 2025 Jan 15].
                35.  Mutengwa CS, Mnkeni P, Kondwakwenda A. Climate-  46.  CCKP.  Climate  Change  Overview:  Country  Summary.
                   smart agriculture and food security in Southern Africa:   World Bank Climate Knowledge Portal; 2023. Available
                   A review of the vulnerability of smallholder agriculture   from:  https://climateknowledgeportal.worldbank.org/
                   and food security to climate  change.  Sustainability.   country/Pakistan [Last accessed on 2025 Jan 15].
                   2023;15(4):2882.                                 47.  Pesaran MH, Shin  Y, Smith RJ. Bounds testing
                   doi: 10.3390/su15042882                              approaches to the analysis of level relationships. J Appl
                36.  Abekoon T, Sajindra H, Rathnayake N, et al. A novel   Econometrics. 2001;16(3):289-326.
                   application  with  explainable  machine  learning     doi: 10.1002/jae.616
                   (SHAP and LIME) to predict soil N, P, and K nutrient   48.  Jiang T, Zhong M, Gao A, Ma G. Do factor misallocations
                   content in cabbage cultivation.  Smart  Agric  Technol.   affect food security? Evidence from China. Agriculture.
                   2025;11:100879.                                      2024;14(5):729.
                   doi: 10.1016/j.atech.2025.100879                     doi: 10.3390/agriculture14050729
                37.  Soussi  A, Zero E, Sacile  R,  Trinchero D, Fossa M.   49.  Zahoor I, Mushtaq A. Water pollution from agricultural
                   Smart sensors and smart data for precision agriculture: A   activities: A critical global review. Int J Chem Biochem
                   review. Sensors. 2024;24(8):2647.                    Sci. 2023;23(1):164-176.
                   doi: 10.3390/s24082647                           50.  Stevenson JR, Macours K, Gollin D. The rigor revolution:
                38.  Ahmad U, Sharma L.  A  review of best management   New standards of evidence  for impact  assessment of
                   practices  for potato crop using precision agricultural   international  agricultural  research.  Annu  Rev  Resour
                   technologies. Smart Agric Technol. 2023;4:100220.    Econ. 2023;15:495-515.
                   doi: 10.1016/j.atech.2023.100220                 51.  Rehman  KU,  Andleeb  S,  Ashfaq  M,  Akram  N,
                39.  Waqas  MM,  Wasim  M,  Ashraf  M,  Jatoi  WN.      Akram MW. Blockchain-enabled  smart agriculture:
                   Engineering  principles of precision farming: Pathway   Enhancing  data-driven  decision making  and ensuring
                   for the developing countries to ensure food security. In:   food security. J Clean Prod. 2023;427:138900.
                   Jatoi WN, Mubeen M, Hashmi MZ, et al., editors. Climate      doi: 10.1016/j.jclepro.2023.138900
                   Change Impacts on Agriculture. Cham: Springer; 2023.  52.  Liang  C,  Shah  T.  IoT in  agriculture:  The  future  of
                   doi: 10.1007/978-3-031-26692-8_7                     precision monitoring and data-driven farming. Eigenpub
                40.  Ji M, Zhang X. Assessing the impacts and mechanisms   Rev Sci Technol. 2023;7(1):85-104.
                   of  green  bond  financing  on  the  enhancement  of   53.  Hassan M, Kowalska A, Ashraf H. Advances in  deep
                   green  management  and  technological  innovation  in   learning algorithms for agricultural  monitoring and
                   environmental conservation enterprises. J Knowl Econ.   management.  Appl  Res  ArtifIntell  Cloud  Comput.
                   2023;3:12709-50.                                     2023;6(1):68-88.
                   doi: 10.1007/s13132-023-01594-1                  54.  Tripathi  PK, Singh CK, Singh R, Deshmukh  AK.
                41.  Gemtou M, Kakkavou K, Anastasiou E, et al. Farmers’   A farmer-centric agricultural decision support system for
                   transition  to  climate-smart  agriculture:  A  systematic   market dynamics in a volatile agricultural supply chain.
                   review of the decision-making factors affecting adoption.   Benchmarking Int J. 2023;30(10):3925-3952.
                   Sustainability. 2024;16(7):2828.                     doi: 10.1108/BIJ-12-2021-0780
                   doi: 10.3390/su16072828                          55.  Bokolo  AJ. Examining  the  adoption  of sustainable
                42.  Imran M, Sattar A, Alam MS. Heterogeneous analysis   eMobility-sharing  in  smart  communities:  Diffusion
                   of free trade agreement between Pakistan and China:   of innovation theory perspective.  Smart  Cities.
                   A policy guideline  for CPEC. J  Econ  Adm Sci.      2023;6(4):2057-2080.
                   2024;40(1):76-94.                                    doi: 10.3390/smartcities6040095
                   doi: 10.1108/JEAS-02-2022-0051                   56.  Haruna  LZ,  Sennuga  SO, Bamidele  J,  et  al. Factors
                43.  Jobarteh B, Neethirajan S. Leveraging satellite data for   influencing farmers’ adoption of improved technologies
                   greenhouse gas mitigation in Canadian poultry farming.   in maize production in Kuje Area Council of FCT-Abuja,
                   Smart Agric Technol. 2025;10:100704.                 Nigeria. GPH Int J Agric Res. 2023;6(4):25-41.



                Volume 22 Issue 3 (2025)                       117                           doi: 10.36922/AJWEP025130096
   118   119   120   121   122   123   124   125   126   127   128