Page 75 - AN-1-1
P. 75

Advanced Neurology                                         Cortical thickness and regional homogeneity in CSVD



            Writing – original draft: Yuting Mo and Lili Huang    low-frequency fluctuation and degree centrality within
                                                                  the default mode network in patients with vascular mild
            Writing – review and editing: Qing Ye, Xiaolei Zhu, and   cognitive impairment. Brain Sci, 11: 1534.
               Kelei He
                                                                  https://doi.org/10.3390/brainsci11111534
            References                                         11.  Wang Y, Yang Y, Wang T, et al., 2020, Correlation between
            1.   Huang L, Chen X, Sun W,  et al., 2020, Early segmental   white matter hyperintensities related gray matter volume
               white matter fascicle microstructural damage predicts   and cognition  in  cerebral  small  vessel  disease.  J  Stroke
               the  corresponding  cognitive  domain  impairment  in   Cerebrovasc Dis, 29: 105275.
               cerebral small vessel disease patients by automated fiber      https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105275
               quantification. Front Aging Neurosci, 12: 598242.
                                                               12.  Tang J, Shi L, Zhao Q, et al., 2017, Coexisting cortical atrophy
               https://doi.org/10.3389/fnagi.2020.598242          plays a crucial role in cognitive impairment in moderate to
                                                                  severe cerebral small vessel disease patients.  Discov Med,
            2.   Cannistraro RJ, Badi M, Eidelman BH,  et al., 2019, CNS
               small vessel disease: A  clinical review.  Neurology, 92(24):   23: 175–182.
               1146–1156.                                      13.  Zang Y, Jiang T, Lu Y, et al., 2004, Regional homogeneity
                                                                  approach to fMRI data analysis. Neuroimage, 22: 394–400.
            3.   Jokinen H, Melkas S, Madureira S, et al., 2016, Cognitive
               reserve moderates long-term cognitive and functional      https://doi.org/10.1016/j.neuroimage.2003.12.030
               outcome in cerebral small vessel disease. J Neurol Neurosurg   14.  Ye Q, Chen X, Qin R,  et al., 2019, Enhanced regional
               Psychiatry, 87: 1296–1302.                         homogeneity and functional connectivity in subjects with
               https://doi.org/10.1136/jnnp-2016-313914           white  matter  hyperintensities  and  cognitive  impairment.
                                                                  Front Neurosci, 13: 695.
            4.   Liu R, Wu W, Ye Q, et al., 2019, Distinctive and pervasive
               alterations of functional brain networks in cerebral small      https://doi.org/10.3389/fnins.2019.00695
               vessel disease with and without cognitive impairment.   15.  Prins ND, Scheltens P. White matter hyperintensities,
               Dement Geriatr Cogn Disord, 47: 55–67.             cognitive impairment and dementia: An update.  Nat Rev
               https://doi.org/10.1159/000496455                  Neurol, 11: 157–165.
            5.   Chen H, Zhu H, Huang L,  et al., 2022, The flexibility of      https://doi.org/10.1038/nrneurol.2015.10
               cognitive reserve in regulating the frontoparietal control   16.  Wardlaw JM, Smith EE, Biessels GJ, et al., 2013, Neuroimaging
               network and cognitive function in subjects with white   standards for research into small vessel disease and its
               matter hyperintensities. Behav Brain Res, 2022: 113831.  contribution to ageing and neurodegeneration.  Lancet
               https://doi.org/10.1016/j.bbr.2022.113831          Neurol, 12:822–838.
            6.   Dey  AK,  Stamenova  V,  Turner  G,  et  al.,  2016,      https://doi.org/10.1016/S1474-4422(13)70124-8
               Pathoconnectomics  of  cognitive  impairment  in  small   17.  Lawrence AJ, Chung AW, Morris RG, et al., 2014, Structural
               vessel disease: A  systematic review.  Alzheimers Dement,   network efficiency is associated with cognitive impairment
               12: 831–845.                                       in small-vessel disease. Neurology, 83: 304–311.
               https://doi.org/10.1016/j.jalz.2016.01.007         https://doi.org/10.1212/WNL.0000000000000612
            7.   Chen H, Huang L, Yang D,  et al., 2019, Nodal global   18.  Lu J, Li D, Li F, et al., 2011, Montreal cognitive assessment
               efficiency in front-parietal lobe mediated periventricular   in detecting cognitive impairment in Chinese elderly
               white matter hyperintensity (PWMH)-related cognitive   individuals: A population-based study. J Geriatr Psychiatry
               impairment. Front Aging Neurosci, 11: 347.         Neurol, 24: 184–190.
               https://doi.org/10.3389/fnagi.2019.00347           https://doi.org/10.1177/0891988711422528
            8.   Banerjee G, Wilson D, Jager HR, et al., 2016, Novel imaging   19.  Fischl B, 2012, FreeSurfer. Neuroimage, 62: 774–781.
               techniques in cerebral small vessel diseases and vascular
               cognitive impairment. Biochim Biophys Acta, 1862: 926–938.     https://doi.org/10.1016/j.neuroimage.2012.01.021
                                                               20.  Sled JG, Zijdenbos AP, Evans AC, 1998, A nonparametric
               https://doi.org/10.1016/j.bbadis.2015.12.010
                                                                  method for automatic correction of intensity nonuniformity
            9.   Lambert C, Narean JS, Benjamin P, et al., 2015, Characterising   in MRI data. IEEE Trans Med Imaging, 17: 87–97.
               the grey matter correlates of leukoaraiosis in cerebral small      https://doi.org/10.1109/42.668698
               vessel disease. Neuroimage Clin, 9: 194–205.
                                                               21.  Dale  AM,  Fischl  B, Sereno MI,  1999,  Cortical surface-
               https://doi.org/10.1016/j.nicl.2015.07.002
                                                                  based analysis. I. Segmentation and surface reconstruction.
            10.  Li H,  Jia X, Li  Y,  et al., 2021,  Aberrant amplitude of   Neuroimage, 9: 179–194.


            Volume 1 Issue 1 (2022)                         10                       https://doi.org/10.36922/an.v1i1.48
   70   71   72   73   74   75   76   77   78   79   80