Page 75 - AN-1-1
P. 75
Advanced Neurology Cortical thickness and regional homogeneity in CSVD
Writing – original draft: Yuting Mo and Lili Huang low-frequency fluctuation and degree centrality within
the default mode network in patients with vascular mild
Writing – review and editing: Qing Ye, Xiaolei Zhu, and cognitive impairment. Brain Sci, 11: 1534.
Kelei He
https://doi.org/10.3390/brainsci11111534
References 11. Wang Y, Yang Y, Wang T, et al., 2020, Correlation between
1. Huang L, Chen X, Sun W, et al., 2020, Early segmental white matter hyperintensities related gray matter volume
white matter fascicle microstructural damage predicts and cognition in cerebral small vessel disease. J Stroke
the corresponding cognitive domain impairment in Cerebrovasc Dis, 29: 105275.
cerebral small vessel disease patients by automated fiber https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105275
quantification. Front Aging Neurosci, 12: 598242.
12. Tang J, Shi L, Zhao Q, et al., 2017, Coexisting cortical atrophy
https://doi.org/10.3389/fnagi.2020.598242 plays a crucial role in cognitive impairment in moderate to
severe cerebral small vessel disease patients. Discov Med,
2. Cannistraro RJ, Badi M, Eidelman BH, et al., 2019, CNS
small vessel disease: A clinical review. Neurology, 92(24): 23: 175–182.
1146–1156. 13. Zang Y, Jiang T, Lu Y, et al., 2004, Regional homogeneity
approach to fMRI data analysis. Neuroimage, 22: 394–400.
3. Jokinen H, Melkas S, Madureira S, et al., 2016, Cognitive
reserve moderates long-term cognitive and functional https://doi.org/10.1016/j.neuroimage.2003.12.030
outcome in cerebral small vessel disease. J Neurol Neurosurg 14. Ye Q, Chen X, Qin R, et al., 2019, Enhanced regional
Psychiatry, 87: 1296–1302. homogeneity and functional connectivity in subjects with
https://doi.org/10.1136/jnnp-2016-313914 white matter hyperintensities and cognitive impairment.
Front Neurosci, 13: 695.
4. Liu R, Wu W, Ye Q, et al., 2019, Distinctive and pervasive
alterations of functional brain networks in cerebral small https://doi.org/10.3389/fnins.2019.00695
vessel disease with and without cognitive impairment. 15. Prins ND, Scheltens P. White matter hyperintensities,
Dement Geriatr Cogn Disord, 47: 55–67. cognitive impairment and dementia: An update. Nat Rev
https://doi.org/10.1159/000496455 Neurol, 11: 157–165.
5. Chen H, Zhu H, Huang L, et al., 2022, The flexibility of https://doi.org/10.1038/nrneurol.2015.10
cognitive reserve in regulating the frontoparietal control 16. Wardlaw JM, Smith EE, Biessels GJ, et al., 2013, Neuroimaging
network and cognitive function in subjects with white standards for research into small vessel disease and its
matter hyperintensities. Behav Brain Res, 2022: 113831. contribution to ageing and neurodegeneration. Lancet
https://doi.org/10.1016/j.bbr.2022.113831 Neurol, 12:822–838.
6. Dey AK, Stamenova V, Turner G, et al., 2016, https://doi.org/10.1016/S1474-4422(13)70124-8
Pathoconnectomics of cognitive impairment in small 17. Lawrence AJ, Chung AW, Morris RG, et al., 2014, Structural
vessel disease: A systematic review. Alzheimers Dement, network efficiency is associated with cognitive impairment
12: 831–845. in small-vessel disease. Neurology, 83: 304–311.
https://doi.org/10.1016/j.jalz.2016.01.007 https://doi.org/10.1212/WNL.0000000000000612
7. Chen H, Huang L, Yang D, et al., 2019, Nodal global 18. Lu J, Li D, Li F, et al., 2011, Montreal cognitive assessment
efficiency in front-parietal lobe mediated periventricular in detecting cognitive impairment in Chinese elderly
white matter hyperintensity (PWMH)-related cognitive individuals: A population-based study. J Geriatr Psychiatry
impairment. Front Aging Neurosci, 11: 347. Neurol, 24: 184–190.
https://doi.org/10.3389/fnagi.2019.00347 https://doi.org/10.1177/0891988711422528
8. Banerjee G, Wilson D, Jager HR, et al., 2016, Novel imaging 19. Fischl B, 2012, FreeSurfer. Neuroimage, 62: 774–781.
techniques in cerebral small vessel diseases and vascular
cognitive impairment. Biochim Biophys Acta, 1862: 926–938. https://doi.org/10.1016/j.neuroimage.2012.01.021
20. Sled JG, Zijdenbos AP, Evans AC, 1998, A nonparametric
https://doi.org/10.1016/j.bbadis.2015.12.010
method for automatic correction of intensity nonuniformity
9. Lambert C, Narean JS, Benjamin P, et al., 2015, Characterising in MRI data. IEEE Trans Med Imaging, 17: 87–97.
the grey matter correlates of leukoaraiosis in cerebral small https://doi.org/10.1109/42.668698
vessel disease. Neuroimage Clin, 9: 194–205.
21. Dale AM, Fischl B, Sereno MI, 1999, Cortical surface-
https://doi.org/10.1016/j.nicl.2015.07.002
based analysis. I. Segmentation and surface reconstruction.
10. Li H, Jia X, Li Y, et al., 2021, Aberrant amplitude of Neuroimage, 9: 179–194.
Volume 1 Issue 1 (2022) 10 https://doi.org/10.36922/an.v1i1.48

