Page 27 - AN-1-2
P. 27
Advanced Neurology MiR-195 regulates MS-dCA1 neural circuit in CBH rat
Formal analysis: Xuqiao Wang, Yi Xu 10. Mao M, Xu Y, Zhang XY, et al., 2020, MicroRNA-195
Investigation: Xuqiao Wang, Yi Xu, Shuai Zhang, Yang Qu, prevents hippocampal microglial/macrophage polarization
Dongyang Wang, Xiaobin An, Lu Zeng, Wentao Xu, towards the M1 phenotype induced by chronic brain
Yan Wu, Haihui Chen, Qin Wang hypoperfusion through regulating CX3CL1/CX3CR1
Writing – original draft: Xuqiao Wang, Jing Ai signaling. J Neuroinflammation, 17(1): 244.
Writing – review & editing: Xuqiao Wang, Jing Ai https://doi.org/10.1186/s12974-020-01919-w
All authors read and approved the final version of the 11. Yan ML, Zhang S, Zhao HM, et al., 2020, MicroRNA-153
manuscript. impairs presynaptic plasticity by blocking vesicle release
References following chronic brain hypoperfusion. Cell Commun
Signal, 18(1): 57.
1. Santos CY, Snyder PJ, Wu WC, et al., 2017, Pathophysiologic
relationship between Alzheimer’s disease, cerebrovascular https://doi.org/10.1186/s12964-020-00551-8
disease, and cardiovascular risk: A review and synthesis. 12. Xu Y, Zhang S, Sun Q, et al., 2020, Cholinergic dysfunction
Alzheimers Dement (Amst), 7: 69–87. involvement in chronic cerebral hypoperfusion-induced
2. O’Brien JT, Thomas A, 2015, Vascular dementia. Lancet, impairment of medial septum-dCA1 neurocircuit in rats.
386(10004): 1698–706. Front Cell Neurosci, 14: 586591.
3. Zhao Y, Gong CX, 2015, From chronic cerebral https://doi.org/10.3389/fncel.2020.586591
hypoperfusion to Alzheimer-like brain pathology and 13. Huh CY, Goutagny R, Williams S, 2010, Glutamatergic
neurodegeneration. Cell Mol Neurobiol, 35(1): 101–110.
neurons of the mouse medial septum and diagonal band
https://doi.org/10.1007/s10571-014-0127-9 of Broca synaptically drive hippocampal pyramidal cells:
4. Wang X, Xing A, Xu C, et al., 2010, Cerebrovascular Relevance for hippocampal theta rhythm. J Neurosci, 30(47):
hypoperfusion induces spatial memory impairment, 15951–15961.
synaptic changes, and amyloid-β oligomerization in rats. https://doi.org/10.1523/jneurosci.3663-10.2010
J Alzheimers Dis, 21(3): 813–822.
14. Hangya B, Borhegyi Z, Szilágyi N, et al., 2009, GABAergic
https://doi.org/10.3233/jad-2010-100216 neurons of the medial septum lead the hippocampal network
5. Choi BR, Lee SR, Han JS, et al., 2011, Synergistic memory during theta activity. J Neurosci, 29(25): 8094–8102.
impairment through the interaction of chronic cerebral https://doi.org/10.1523/jneurosci.5665-08.2009
hypoperfusion and amlyloid toxicity in a rat model. Stroke,
42(9): 2595–2604. 15. Newman EL, Gillet SN, Climer JR, et al., 2013, Cholinergic
blockade reduces theta-gamma phase amplitude coupling and
https://doi.org/10.1161/strokeaha.111.620179 speed modulation of theta frequency consistent with behavioral
6. Zhao Q, Murakami Y, Tohda M, et al., 2007, Chotosan, a effects on encoding. J Neurosci, 33(50): 19635–19646.
kampo formula, ameliorates chronic cerebral hypoperfusion- https://doi.org/10.1523/jneurosci.2586-13.2013
induced deficits in object recognition behaviors and central
cholinergic systems in mice. J Pharmacol Sci, 103(4): 360–373. 16. Nuñez A, Buño W, 2021, The theta rhythm of the
hippocampus: From neuronal and circuit mechanisms to
https://doi.org/10.1254/jphs.fp0061457 behavior. Front Cell Neurosci, 15: 649262.
7. Ai J, Sun LH, Che H, et al., 2013, MicroRNA-195 protects https://doi.org/10.3389/fncel.2021.649262
against dementia induced by chronic brain hypoperfusion
via its anti-amyloidogenic effect in rats. J Neurosci, 33(9): 17. Schmitz TW, Spreng RN, 2016, Basal forebrain degeneration
3989–4001. precedes and predicts the cortical spread of Alzheimer’s
pathology. Nat Commun, 7: 13249.
https://doi.org/10.1523/jneurosci.1997-12.2013
https://doi.org/10.1038/ncomms13249
8. Chen X, Jiang XM, Zhao LJ, et al., 2017, MicroRNA-195
prevents dendritic degeneration and neuron death in rats 18. Provost P, 2010, Interpretation and applicability of
following chronic brain hypoperfusion. Cell Death Dis, 8(6): microRNA data to the context of Alzheimer’s and age-
e2850. related diseases. Aging (Albany NY), 2(3): 166–169.
https://doi.org/10.1038/cddis.2017.243 https://doi.org/10.18632/aging.100131
9. Liu CD, Wang Q, Zong K, et al., 2016, Knockdown of 19. Takousis P, Sadlon A, Schulz J, et al., 2019, Differential
microRNA-195 contributes to protein phosphatase-2A expression of microRNAs in Alzheimer’s disease brain,
inactivation in rats with chronic brain hypoperfusion. blood, and cerebrospinal fluid. Alzheimers Dement, 15(11):
Neurobiol Aging, 45: 76–87. 1468–1477.
https://doi.org/10.1016/j.neurobiolaging.2016.05.010 20. Boissonneault V, Plante I, Rivest S, et al., 2009,
Volume 1 Issue 2 (2022) 12 https://doi.org/10.36922/an.v1i2.116

