Page 27 - AN-1-2
P. 27

Advanced Neurology                                         MiR-195 regulates MS-dCA1 neural circuit in CBH rat



            Formal analysis: Xuqiao Wang, Yi Xu                10.  Mao M, Xu Y, Zhang XY,  et al., 2020, MicroRNA-195
            Investigation: Xuqiao Wang, Yi Xu, Shuai Zhang, Yang Qu,   prevents hippocampal microglial/macrophage polarization
               Dongyang Wang, Xiaobin An, Lu Zeng, Wentao Xu,     towards the M1 phenotype induced by chronic brain
               Yan Wu, Haihui Chen, Qin Wang                      hypoperfusion through regulating CX3CL1/CX3CR1
            Writing – original draft: Xuqiao Wang, Jing Ai        signaling. J Neuroinflammation, 17(1): 244.
            Writing – review & editing: Xuqiao Wang, Jing Ai       https://doi.org/10.1186/s12974-020-01919-w
            All authors read and approved the final version of the   11.  Yan ML, Zhang S, Zhao HM, et al., 2020, MicroRNA-153
               manuscript.                                        impairs presynaptic plasticity by blocking vesicle release
            References                                            following chronic brain hypoperfusion.  Cell Commun
                                                                  Signal, 18(1): 57.
            1.   Santos CY, Snyder PJ, Wu WC, et al., 2017, Pathophysiologic
               relationship between  Alzheimer’s  disease, cerebrovascular      https://doi.org/10.1186/s12964-020-00551-8
               disease,  and  cardiovascular  risk:  A  review  and  synthesis.   12.  Xu Y, Zhang S, Sun Q, et al., 2020, Cholinergic dysfunction
               Alzheimers Dement (Amst), 7: 69–87.                involvement in chronic cerebral hypoperfusion-induced
            2.   O’Brien JT, Thomas A, 2015, Vascular dementia.  Lancet,   impairment of medial septum-dCA1 neurocircuit in rats.
               386(10004): 1698–706.                              Front Cell Neurosci, 14: 586591.
            3.   Zhao Y, Gong CX, 2015, From chronic cerebral      https://doi.org/10.3389/fncel.2020.586591
               hypoperfusion to Alzheimer-like brain pathology and   13.  Huh CY, Goutagny R, Williams S, 2010, Glutamatergic
               neurodegeneration. Cell Mol Neurobiol, 35(1): 101–110.
                                                                  neurons of the mouse medial septum and diagonal band
               https://doi.org/10.1007/s10571-014-0127-9          of Broca synaptically drive hippocampal pyramidal cells:
            4.   Wang X, Xing A, Xu C,  et al., 2010, Cerebrovascular   Relevance for hippocampal theta rhythm. J Neurosci, 30(47):
               hypoperfusion induces  spatial memory impairment,   15951–15961.
               synaptic changes, and amyloid-β oligomerization in rats.      https://doi.org/10.1523/jneurosci.3663-10.2010
               J Alzheimers Dis, 21(3): 813–822.
                                                               14.  Hangya B, Borhegyi Z, Szilágyi N, et al., 2009, GABAergic
               https://doi.org/10.3233/jad-2010-100216            neurons of the medial septum lead the hippocampal network
            5.   Choi BR, Lee SR, Han JS, et al., 2011, Synergistic memory   during theta activity. J Neurosci, 29(25): 8094–8102.
               impairment through the interaction of chronic cerebral      https://doi.org/10.1523/jneurosci.5665-08.2009
               hypoperfusion and amlyloid toxicity in a rat model. Stroke,
               42(9): 2595–2604.                               15.  Newman EL, Gillet SN, Climer JR, et al., 2013, Cholinergic
                                                                  blockade reduces theta-gamma phase amplitude coupling and
               https://doi.org/10.1161/strokeaha.111.620179       speed modulation of theta frequency consistent with behavioral
            6.   Zhao Q, Murakami Y, Tohda M,  et al., 2007, Chotosan, a   effects on encoding. J Neurosci, 33(50): 19635–19646.
               kampo formula, ameliorates chronic cerebral hypoperfusion-  https://doi.org/10.1523/jneurosci.2586-13.2013
               induced deficits in object recognition behaviors and central
               cholinergic systems in mice. J Pharmacol Sci, 103(4): 360–373.   16.  Nuñez A, Buño W, 2021, The theta rhythm of the
                                                                  hippocampus: From neuronal and circuit mechanisms to
               https://doi.org/10.1254/jphs.fp0061457             behavior. Front Cell Neurosci, 15: 649262.
            7.   Ai J, Sun LH, Che H, et al., 2013, MicroRNA-195 protects      https://doi.org/10.3389/fncel.2021.649262
               against dementia induced by chronic brain hypoperfusion
               via its anti-amyloidogenic effect in rats. J Neurosci, 33(9):   17.  Schmitz TW, Spreng RN, 2016, Basal forebrain degeneration
               3989–4001.                                         precedes  and  predicts  the  cortical  spread  of  Alzheimer’s
                                                                  pathology. Nat Commun, 7: 13249.
               https://doi.org/10.1523/jneurosci.1997-12.2013
                                                                  https://doi.org/10.1038/ncomms13249
            8.   Chen X, Jiang XM, Zhao LJ,  et al., 2017, MicroRNA-195
               prevents dendritic degeneration and neuron death in rats   18.  Provost  P, 2010,  Interpretation  and applicability  of
               following chronic brain hypoperfusion. Cell Death Dis, 8(6):   microRNA data to the context of Alzheimer’s and age-
               e2850.                                             related diseases. Aging (Albany NY), 2(3): 166–169.
               https://doi.org/10.1038/cddis.2017.243             https://doi.org/10.18632/aging.100131
            9.   Liu CD,  Wang Q, Zong K,  et al., 2016,  Knockdown of   19.  Takousis P, Sadlon A, Schulz J,  et al., 2019, Differential
               microRNA-195 contributes to protein phosphatase-2A   expression of microRNAs in Alzheimer’s disease brain,
               inactivation in rats with chronic brain hypoperfusion.   blood, and cerebrospinal fluid. Alzheimers Dement, 15(11):
               Neurobiol Aging, 45: 76–87.                        1468–1477.
               https://doi.org/10.1016/j.neurobiolaging.2016.05.010  20.  Boissonneault V, Plante I, Rivest S,  et al., 2009,


            Volume 1 Issue 2 (2022)                         12                      https://doi.org/10.36922/an.v1i2.116
   22   23   24   25   26   27   28   29   30   31   32