Page 28 - AN-2-3
P. 28
Advanced Neurology The role of gut in multiple sclerosis
38. Korkina L, Kostyuk V, De Luca C, et al., 2011, Plant role in fatty acid transport across human brain microvessel
phenylpropanoids as emerging anti-inflammatory agents. endothelial cells. J Neurochem, 117: 735–746.
Mini Rev Med Chem, 11: 823–835.
https://doi.org/10.1111/j.1471-4159.2011.07245.x
https://doi.org/10.2174/138955711796575489
49. Bonini JA, Anderson SM, Steiner DF, 1997, Molecular
39. Schogor AL, Huws SA, Santos GT, et al., 2014, Ruminal cloning and tissue expression of a novel orphan G protein-
Prevotella spp. may play an important role in the conversion coupled receptor from rat lung. Biochem Biophys Res
of plant lignans into human health beneficial antioxidants. Commun, 234: 190–193.
PLoS One, 9: e87949.
https://doi.org/10.1006/bbrc.1997.6591
https://doi.org/10.1371/journal.pone.0087949
50. Kim CH, 2018, Immune regulation by microbiome
40. Toh H, Oshima K, Suzuki T, et al., 2013, Complete genome metabolites. Immunology, 154: 220–229.
sequence of the equol-producing bacterium Adlercreutzia
equolifaciens DSM 19450T. Genome Announc, 1. https://doi.org/10.1111/imm.12930
51. Deleu S, Machiels K, Raes J, et al., 2021, Short chain fatty
https://doi.org/10.1128/genomeA.00742-13
acids and its producing organisms: An overlooked therapy
41. Saresella M, Marventano I, Barone M, et al., 2020, for IBD? EBioMedicine, 66: 103293.
Alterations in circulating fatty acid are associated with gut
microbiota dysbiosis and inflammation in multiple sclerosis. https://doi.org/10.1016/j.ebiom.2021.103293
Front Immunol, 11: 1390. 52. Park J, Wang Q, Wu Q, et al., 2019, Bidirectional regulatory
https://doi.org/10.3389/fimmu.2020.01390 potentials of short-chain fatty acids and their G-protein-
coupled receptors in autoimmune neuroinflammation. Sci
42. Barone M, Mendozzi L, D’Amico F, et al., 2021, Influence of Rep, 9: 8837.
a high-impact multidimensional rehabilitation program on
the gut microbiota of patients with multiple sclerosis. Int J https://doi.org/10.1038/s41598-019-45311-y
Mol Sci, 22: 7173. 53. Duscha A, Gisevius B, Hirschberg S, et al., 2020, Propionic
https://doi.org/10.3390/ijms22137173 acid shapes the multiple sclerosis disease course by an
immunomodulatory mechanism. Cell, 180: 1067–1080.e16.
43. Mangalam A, Shahi SK, Luckey D, et al., 2017, Human gut-
derived commensal bacteria suppress CNS inflammatory https://doi.org/10.1016/j.cell.2020.02.035
and demyelinating disease. Cell Rep, 20: 1269–1277. 54. Takewaki D, Suda W, Sato W, et al., 2020, Alterations of
https://doi.org/10.1016/j.celrep.2017.07.031 the gut ecological and functional microenvironment in
different stages of multiple sclerosis. Proc Natl Acad Sci U S
44. Horton MK, McCauley K, Fadrosh D, et al., 2021, Gut A, 117: 22402–22412.
microbiome is associated with multiple sclerosis activity in
children. Ann Clin Transl Neurol, 8: 1867–1883. https://doi.org/10.1073/pnas.2011703117
https://doi.org/10.1002/acn3.51441 55. Ling Z, Cheng Y, Yan X, et al., 2020, Alterations of the fecal
microbiota in Chinese patients with multiple sclerosis. Front
45. Peng L, Li ZR, Green RS, et al., 2009, Butyrate enhances the Immunol, 11: 590783.
intestinal barrier by facilitating tight junction assembly via
activation of AMP-activated protein kinase in Caco-2 cell https://doi.org/10.3389/fimmu.2020.590783
monolayers. J Nutr, 139: 1619–1625. 56. Luu M, Pautz S, Kohl V, et al., 2019, The short-chain fatty
https://doi.org/10.3945/jn.109.104638 acid pentanoate suppresses autoimmunity by modulating
the metabolic-epigenetic crosstalk in lymphocytes. Nat
46. Dalile B, Van Oudenhove L, Vervliet B, et al., 2019, The Commun, 10: 760.
role of short-chain fatty acids in microbiota-gut-brain
communication. Nat Rev Gastroenterol Hepatol, 16: https://doi.org/10.1038/s41467-019-08711-2
461–478. 57. Haase S, Mäurer J, Duscha A, et al., 2021, Propionic acid
https://doi.org/10.1038/s41575-019-0157-3 rescues high-fat diet enhanced immunopathology in
autoimmunity via effects on Th17 responses. Front Immunol,
47. Bachem A, Makhlouf C, Binger KJ, et al., 2019, Microbiota-
derived short-chain fatty acids promote the memory 12: 701626.
potential of antigen-activated CD8 T Cells. Immunity, https://doi.org/10.3389/fimmu.2021.701626
+
51: 285–297.e5.
58. Perez-Perez S, Domínguez-Mozo MI, Alonso-Gómez A,
https://doi.org/10.1016/j.immuni.2019.06.002 et al., 2020, Acetate correlates with disability and immune
response in multiple sclerosis. PeerJ, 8: e10220.
48. Mitchell RW, On NH, Del Bigio MR, et al., 2011, Fatty acid
transport protein expression in human brain and potential https://doi.org/10.7717/peerj.10220
Volume 2 Issue 3 (2023) 11 https://doi.org/10.36922/an.413

