Page 28 - AN-2-3
P. 28

Advanced Neurology                                                       The role of gut in multiple sclerosis



            38.  Korkina L, Kostyuk V, De Luca C,  et  al., 2011, Plant   role in fatty acid transport across human brain microvessel
               phenylpropanoids  as emerging anti-inflammatory agents.   endothelial cells. J Neurochem, 117: 735–746.
               Mini Rev Med Chem, 11: 823–835.
                                                                  https://doi.org/10.1111/j.1471-4159.2011.07245.x
               https://doi.org/10.2174/138955711796575489
                                                               49.  Bonini JA, Anderson SM, Steiner DF, 1997, Molecular
            39.  Schogor AL, Huws SA, Santos GT,  et al., 2014, Ruminal   cloning and tissue expression of a novel orphan G protein-
               Prevotella spp. may play an important role in the conversion   coupled  receptor  from rat lung.  Biochem Biophys Res
               of plant lignans into human health beneficial antioxidants.   Commun, 234: 190–193.
               PLoS One, 9: e87949.
                                                                  https://doi.org/10.1006/bbrc.1997.6591
               https://doi.org/10.1371/journal.pone.0087949
                                                               50.  Kim CH, 2018, Immune regulation by microbiome
            40.  Toh H, Oshima K, Suzuki T, et al., 2013, Complete genome   metabolites. Immunology, 154: 220–229.
               sequence of the equol-producing bacterium  Adlercreutzia
               equolifaciens DSM 19450T. Genome Announc, 1.       https://doi.org/10.1111/imm.12930
                                                               51.  Deleu S, Machiels K, Raes J, et al., 2021, Short chain fatty
               https://doi.org/10.1128/genomeA.00742-13
                                                                  acids and its producing organisms: An overlooked therapy
            41.  Saresella M, Marventano I, Barone M,  et al., 2020,   for IBD? EBioMedicine, 66: 103293.
               Alterations in circulating fatty acid are associated with gut
               microbiota dysbiosis and inflammation in multiple sclerosis.      https://doi.org/10.1016/j.ebiom.2021.103293
               Front Immunol, 11: 1390.                        52.  Park J, Wang Q, Wu Q, et al., 2019, Bidirectional regulatory
               https://doi.org/10.3389/fimmu.2020.01390           potentials of short-chain fatty acids and their G-protein-
                                                                  coupled receptors in autoimmune neuroinflammation. Sci
            42.  Barone M, Mendozzi L, D’Amico F, et al., 2021, Influence of   Rep, 9: 8837.
               a high-impact multidimensional rehabilitation program on
               the gut microbiota of patients with multiple sclerosis. Int J      https://doi.org/10.1038/s41598-019-45311-y
               Mol Sci, 22: 7173.                              53.  Duscha A, Gisevius B, Hirschberg S, et al., 2020, Propionic
               https://doi.org/10.3390/ijms22137173               acid shapes the multiple sclerosis disease course by an
                                                                  immunomodulatory mechanism. Cell, 180: 1067–1080.e16.
            43.  Mangalam A, Shahi SK, Luckey D, et al., 2017, Human gut-
               derived  commensal  bacteria  suppress  CNS  inflammatory      https://doi.org/10.1016/j.cell.2020.02.035
               and demyelinating disease. Cell Rep, 20: 1269–1277.   54.  Takewaki D, Suda W, Sato W,  et al., 2020,  Alterations of
               https://doi.org/10.1016/j.celrep.2017.07.031       the gut ecological and functional microenvironment in
                                                                  different stages of multiple sclerosis. Proc Natl Acad Sci U S
            44.  Horton MK, McCauley K, Fadrosh D,  et al., 2021, Gut   A, 117: 22402–22412.
               microbiome is associated with multiple sclerosis activity in
               children. Ann Clin Transl Neurol, 8: 1867–1883.      https://doi.org/10.1073/pnas.2011703117
               https://doi.org/10.1002/acn3.51441              55.  Ling Z, Cheng Y, Yan X, et al., 2020, Alterations of the fecal
                                                                  microbiota in Chinese patients with multiple sclerosis. Front
            45.  Peng L, Li ZR, Green RS, et al., 2009, Butyrate enhances the   Immunol, 11: 590783.
               intestinal barrier by facilitating tight junction assembly via
               activation of AMP-activated protein kinase in Caco-2 cell      https://doi.org/10.3389/fimmu.2020.590783
               monolayers. J Nutr, 139: 1619–1625.             56.  Luu M, Pautz S, Kohl V, et al., 2019, The short-chain fatty
                https://doi.org/10.3945/jn.109.104638             acid pentanoate suppresses autoimmunity by modulating
                                                                  the  metabolic-epigenetic  crosstalk  in  lymphocytes.  Nat
            46.  Dalile  B,  Van  Oudenhove  L,  Vervliet  B,  et al.,  2019,  The   Commun, 10: 760.
               role of short-chain fatty acids in microbiota-gut-brain
               communication.  Nat Rev Gastroenterol Hepatol, 16:        https://doi.org/10.1038/s41467-019-08711-2
               461–478.                                        57.  Haase S, Mäurer J, Duscha A, et al., 2021, Propionic acid
               https://doi.org/10.1038/s41575-019-0157-3          rescues high-fat diet enhanced immunopathology in
                                                                  autoimmunity via effects on Th17 responses. Front Immunol,
            47.  Bachem A, Makhlouf C, Binger KJ, et al., 2019, Microbiota-
               derived short-chain fatty acids promote the memory   12: 701626.
               potential of antigen-activated CD8  T Cells.  Immunity,      https://doi.org/10.3389/fimmu.2021.701626
                                          +
               51: 285–297.e5.
                                                               58.  Perez-Perez S, Domínguez-Mozo MI, Alonso-Gómez A,
               https://doi.org/10.1016/j.immuni.2019.06.002       et al., 2020, Acetate correlates with disability and immune
                                                                  response in multiple sclerosis. PeerJ, 8: e10220.
            48.  Mitchell RW, On NH, Del Bigio MR, et al., 2011, Fatty acid
               transport protein expression in human brain and potential      https://doi.org/10.7717/peerj.10220


            Volume 2 Issue 3 (2023)                         11                         https://doi.org/10.36922/an.413
   23   24   25   26   27   28   29   30   31   32   33