Page 29 - AN-2-3
P. 29

Advanced Neurology                                                       The role of gut in multiple sclerosis



            59.  Olsson A, Gustavsen S, Nguyen TD,  et al., 2021, Serum   174: 1263–1280.
               short-chain fatty acids and associations with inflammation      https://doi.org/10.1111/bph.13622
               in newly diagnosed patients with multiple sclerosis and
               healthy controls. Front Immunol, 12: 661493.    70.  Masilamani M, Wei J, Sampson HA, 2012, Regulation of
                                                                  the immune response by soybean isoflavones. Immunol Res,
               https://doi.org/10.3389/fimmu.2021.661493
                                                                  54: 95–110.
            60.  Lim CK, Bilgin A, Lovejoy DB,  et al., 2017, Kynurenine      https://doi.org/10.1007/s12026-012-8331-5
               pathway metabolomics predicts and provides mechanistic
               insight into multiple sclerosis progression. Sci Rep, 7: 41473.   71.  Rafii F, 2015, The role of colonic bacteria in the metabolism
                                                                  of  the  natural  isoflavone  daidzin  to  equol.  Metabolites,
               https://doi.org/4147310.1038/srep41473
                                                                  5: 56–73.
            61.  Rothhammer V, Mascanfroni ID, Bunse L,  et al., 2016,
               Type I interferons and microbial metabolites of tryptophan      https://doi.org/10.3390/metabo5010056
               modulate astrocyte activity and central nervous system   72.  Clavel T, Borrmann D, Braune A, et al., 2006, Occurrence
               inflammation via the aryl hydrocarbon receptor. Nat Med,   and activity of human intestinal bacteria involved in the
               22: 586–597.                                       conversion of dietary lignans. Anaerobe, 12: 140–147.
               https://doi.org/10.1038/nm.4106                    https://doi.org/10.1016/j.anaerobe.2005.11.002
            62.  Nourbakhsh B, Bhargava P, Tremlett H,  et al., 2018,   73.  Freedman  SN,  Shahi  SK,  Mangalam  AK,  2018,  The  “gut
               Altered tryptophan metabolism is associated with pediatric   feeling”: Breaking down the role of gut microbiome in
               multiple sclerosis risk and course. Ann Clin Transl Neurol, 5:    multiple sclerosis. Neurotherapeutics, 15: 109–125.
               1211–1221.
                                                                  https://doi.org/10.1007/s13311-017-0588-x
               https://doi.org/10.1002/acn3.637
                                                               74.  Jensen SN, Cady NM, Shahi SK, et al., 2021, Isoflavone diet
            63.  Rothhammer V, Borucki DM, Sanchez MI,  et al., 2017,   ameliorates  experimental  autoimmune  encephalomyelitis
               Dynamic regulation of serum aryl hydrocarbon receptor   through modulation of gut bacteria depleted in patients
               agonists in MS. Neurol Neuroimmunol Neuroinflamm, 4: e359.   with multiple sclerosis. Sci Adv, 7: eabd4595.
               https://doi.org/10.1212/NXI.0000000000000359       https://doi.org/10.1126/sciadv.abd4595
            64.  Kaye J, Piryatinsky V, Birnberg T, et al., 2016, Laquinimod   75.  Suez J, Zmora N, Segal E, et al., 2019, The pros, cons, and
               arrests experimental autoimmune encephalomyelitis by   many unknowns of probiotics. Nat Med, 25: 716–729.
               activating the aryl hydrocarbon receptor. Proc Natl Acad Sci
               U S A, 113: E6145–E6152.                           https://doi.org/10.1038/s41591-019-0439-x
               https://doi.org/10.1073/pnas.1607843113         76.  Morshedi M, Hashemi R, Moazzen S,  et al., 2019,
                                                                  Immunomodulatory  and  anti-inflammatory effects  of
            65.  Rothhammer V, Kenison JE, Li Z,  et al., 2021, Aryl   probiotics in multiple sclerosis: A  systematic review.
               hydrocarbon receptor activation in astrocytes by laquinimod   J Neuroinflammation, 16: 231.
               ameliorates autoimmune inflammation in the CNS. Neurol
               Neuroimmunol Neuroinflamm, 8: e946.                https://doi.org/10.1186/s12974-019-1611-4
               https://doi.org/10.1212/NXI.0000000000000946    77.  Mestre L, Carrillo-Salinas FJ, Feliú A,  et al., 2020, How
                                                                  oral probiotics affect the severity of an experimental model
            66.  Vollmer TL, Sorensen PS, Selmaj K,  et al., 2014, A   of progressive multiple sclerosis? Bringing commensal
               randomized placebo-controlled phase III trial of oral   bacteria into the neurodegenerative process. Gut Microbes,
               laquinimod for multiple sclerosis. J Neurol, 261: 773–783.   12: 1813532.
               https://doi.org/10.1007/s00415-014-7264-4          https://doi.org/10.1080/19490976.2020.1813532
            67.  Wilck N, Matus MG, Kearney SM, et al., 2017, Salt-responsive   78.  Calvo-Barreiro L, Eixarch H, Ponce-Alonso M,  et al.,
               gut commensal modulates TH17 axis and disease. Nature,   2020, A commercial probiotic induces tolerogenic and
               551: 585–589.                                      reduces pathogenic responses in experimental autoimmune
               https://doi.org/10.1038/nature24628                encephalomyelitis. Cells, 9: 906.
            68.  Rothhammer V, Borucki DM, Tjon EC,  et al., 2018,      https://doi.org/10.3390/cells9040906
               Microglial control of astrocytes in response to microbial   79.  Colpitts SL, Kasper EJ, Keever A, et al., 2017, A bidirectional
               metabolites. Nature, 557: 724–728.
                                                                  association between the gut microbiota and CNS disease in
               https://doi.org/10.1038/s41586-018-0119-x          a biphasic murine model of multiple sclerosis. Gut Microbes,
                                                                  8: 561–573.
            69.  Rietjens IMC, Louisse J, Beekmann K, 2017, The potential
               health effects of dietary phytoestrogens.  Br J Pharmacol,      https://doi.org/10.1080/19490976.2017.1353843


            Volume 2 Issue 3 (2023)                         12                         https://doi.org/10.36922/an.413
   24   25   26   27   28   29   30   31   32   33   34