Page 92 - AN-3-4
P. 92
Advanced Neurology SARS-CoV-2 in age-associated neurodegeneration
Writing - review & editing: All authors 10. Khomari F, Nabi-Afjadi M, Yarahmadi S, Eskandari H,
Bahreini E. Effects of cell proteostasis network on the
Ethics approval and consent to participate survival of SARS-CoV-2. Biol Proced Online. 2021;23(1):8.
Not applicable. doi: 10.1186/s12575-021-00145-9
11. Taeschler P, Cervia C, Zurbuchen Y, et al. Autoantibodies in
Consent for publication COVID-19 correlate with antiviral humoral responses and
Not applicable. distinct immune signatures. Allergy. 2022;77(8):2415-2430.
doi: 10.1111/all.15302
Availability of data
12. Chen Z, Li G. Immune response and blood–brain barrier
Not applicable. dysfunction during viral neuroinvasion. Innate Immun.
2021;27(2):109-117.
References
doi: 10.1177/1753425920954281
1. Hiscott J, Alexandridi M, Muscolini M, et al. The global
impact of the coronavirus pandemic. Cytokine Growth 13. Krasemann S, Haferkamp U, Pfefferle S, et al. The blood-
Factor Rev. 2020;53:1-9. brain barrier is dysregulated in COVID-19 and serves
as a CNS entry route for SARS-CoV-2. Stem Cell Reports.
doi: 10.1016/j.cytogfr.2020.05.010 2022;17(2):307-320.
2. Li G, Hilgenfeld R, Whitley R, De Clercq E. Therapeutic doi: 10.1016/j.stemcr.2021.12.011
strategies for COVID-19: Progress and lessons learned. Nat
Rev Drug Discov. 2023;22(6):449-475. 14. Brown EE, Kumar S, Rajji TK, Pollock BG, Mulsant BH.
Anticipating and mitigating the impact of the COVID-19
doi: 10.1038/s41573-023-00672-y pandemic on Alzheimer’s disease and related dementias. Am
3. Wan D, Du T, Hong W, et al. Neurological complications J Geriatr Psychiatry. 2020;28(7):712-721.
and infection mechanism of SARS-COV-2. Signal Transduct doi: 10.1016/j.jagp.2020.04.010
Target Ther. 2021;6(1):406.
15. Boura I, Qamar MA, Daddoveri F, et al. SARS-CoV-2
doi: 10.1038/s41392-021-00818-7 and Parkinson’s disease: A review of where we are now.
4. Nath A, Johnson TP. Mechanisms of viral persistence Biomedicines. 2023;11(9):2524.
in the brain and therapeutic approaches. FEBS J. doi: 10.3390/biomedicines11092524
2022;289(8):2145-2161.
16. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2
doi: 10.1111/febs.15871 and COVID-19. Nat Rev Microbiol. 2021;19(3):141-154.
5. Bedran D, Bedran G, Kote S. A comprehensive review of doi: 10.1038/s41579-020-00459-7
neurodegenerative manifestations of SARS-CoV-2. Vaccines 17. Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID:
(Basel). 2024;12(3):222.
Major findings, mechanisms and recommendations. Nat
doi: 10.3390/vaccines12030222 Rev Microbiol. 2023;21(3):133-146.
6. Javed A, Batra A, Singh M, Sarkar P. Linkage between doi: 10.1038/s41579-022-00846-2
SARS-CoV-2 infection and neurodegenerative disorders: 18. Li J, Zhou Y, Ma J, et al. The long-term health outcomes,
Review and current update. Adv Neurol. 2024;3(1):2200.
pathophysiological mechanisms and multidisciplinary
doi: 10.36922/an.2200 management of long COVID. Signal Transduct Target Ther.
2023;8(1):416.
7. Xu E, Xie Y, Al-Aly Z. Long-term neurologic outcomes of
COVID-19. Nat Med. 2022;28(11):2406-2415. doi: 10.1038/s41392-023-01640-z
doi: 10.1038/s41591-022-02001-z 19. Blackhurst BM, Funk KE. Viral pathogens increase
risk of neurodegenerative disease. Nat Rev Neurol.
8. Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation
in neurodegeneration development. Signal Transduct Target 2023;19(5):259-260.
Ther. 2023;8(1):267. doi: 10.1038/s41582-023-00790-6
doi: 10.1038/s41392-023-01486-5 20. Raveendran AV, Jayadevan R, Sashidharan S. Long COVID:
An overview. Diabetes Metab Syndr. 2021;15(3):869-875.
9. Saleh J, Peyssonnaux C, Singh KK, Edeas M. Mitochondria
and microbiota dysfunction in COVID-19 pathogenesis. doi: 10.1016/j.dsx.2021.04.007
Mitochondrion. 2020;54:1-7.
21. Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular
doi: 10.1016/j.mito.2020.06.008 outcomes of COVID-19. Nat Med. 2022;28(3):583-590.
Volume 3 Issue 4 (2024) 19 doi: 10.36922/an.4267

