Page 96 - AN-3-4
P. 96

Advanced Neurology                                           SARS-CoV-2 in age-associated neurodegeneration



               predicts severe COVID-19 in the UK biobank community      doi: 10.3969/j.issn.1673-5374.2013.21.009
               cohort. J Gerontol A Biol Sci Med Sci. 2020;75(11):2231-2232.
                                                               96.  Silwal P, Kim JK, Kim YJ, Jo EK. Mitochondrial reactive
               doi: 10.1093/gerona/glaa131                        oxygen species: Double-edged weapon in host defense and
                                                                  pathological inflammation during infection. Front Immunol.
            85.  Xia X, Wang Y, Zheng J. COVID-19 and Alzheimer’s disease:
               How one crisis worsens the other.  Transl Neurodegener.   2020;11:11649.
               2021;10(1):15.                                     doi: 10.3389/fimmu.2020.01649
               doi: 10.1186/s40035-021-00237-2                 97.  Duan C, Ma R, Zeng X, et al. SARS-CoV-2 achieves immune
                                                                  escape by destroying mitochondrial quality: Comprehensive
            86.  Ferini-Strambi L, Salsone M. COVID-19 and neurological
               disorders: Are neurodegenerative or neuroimmunological   analysis  of  the  cellular  landscapes  of lung and  blood
               diseases more vulnerable? J Neurol. 2021;268(2):409-419.  specimens from patients with COVID-19. Front Immunol.
                                                                  2022;13:946731.
               doi: 10.1007/s00415-020-10070-8
                                                                  doi: 10.3389/fimmu.2022.946731
            87.  Monje M, Iwasaki A. The neurobiology of long COVID.
               Neuron. 2022;110(21):3484-3496.                 98.  Wu J, Shi Y, Pan X, et al. SARS-CoV-2 ORF9b inhibits RIG-
                                                                  I-MAVS antiviral signaling by interrupting K63-linked
               doi: 10.1016/j.neuron.2022.10.006                  ubiquitination of NEMO. Cell Rep. 2021;34(7):108761.
            88.  Schultheiß  C, Willscher E, Paschold L,  et  al. The IL-1β,      doi: 10.1016/j.celrep.2021.108761
               IL-6, and TNF cytokine triad is associated with post-acute   99.  Lin MM, Liu N, Qin ZH, Wang Y. Mitochondrial-
               sequelae of COVID-19. Cell Rep Med. 2022;3(6):100663.
                                                                  derived damage-associated molecular patterns amplify
               doi: 10.1016/j.xcrm.2022.100663                    neuroinflammation in neurodegenerative  diseases.  Acta
                                                                  Pharmacol Sin. 2022;43(10):2439-2447.
            89.  Pszczołowska M, Walczak K, Misków W,  et al. Molecular
               cross-talk between long COVID-19 and Alzheimer’s disease.      doi: 10.1038/s41401-022-00879-6
               Geroscience. 2024;46(3):2885-2899.
                                                               100. Soscia SJ, Kirby JE, Washicosky KJ, et al. The Alzheimer’s
               doi: 10.1007/s11357-024-01096-1                    disease-associated  amyloid  β-protein  is  an  antimicrobial
            90.  Yin K, Peluso MJ, Luo X, et al. Long COVID manifests with   peptide. PLoS One. 2010;5(3):e9505.
               T cell dysregulation, inflammation and an uncoordinated      doi: 10.1371/journal.pone.0009505
               adaptive immune response to SARS-CoV-2. Nat Immunol.   101. Ding Q, Shults NV, Gychka SG, Harris BT, Suzuki YJ. Protein
               2024;25(2):218-225.
                                                                  expression of angiotensin-converting enzyme 2 (ACE2) is
               doi: 10.1038/s41590-023-01724-6                    upregulated in brains with Alzheimer’s disease. Int J Mol Sci.
            91.  Klein J, Wood J, Jaycox JR, et al. Distinguishing features of   2021;22(4):1687.
               long COVID identified through immune profiling. Nature.      doi: 10.3390/ijms22041687
               2023;623(7985):139-148.
                                                               102. Tian M, Liu W, Li X, et al. HIF-1α promotes SARS-CoV-2
               doi: 10.1038/s41586-023-06651-y                    infection and aggravates inflammatory responses to
                                                                  COVID-19. Signal Transduct Target Ther. 2021;6(1):308.
            92.  Ng CT, Sullivan BM, Teijaro JR, et al. Blockade of interferon
               beta, but not interferon alpha, signaling controls persistent      doi: 10.1038/s41392-021-00726-w
               viral infection. Cell Host Microbe. 2015;17(5):653-661.
                                                               103. Ajaz  S, McPhail  MJ, Singh  KK,  et al. Mitochondrial
               doi: 10.1016/j.chom.2015.04.005                    metabolic manipulation by SARS-CoV-2 in peripheral
                                                                  blood mononuclear cells of patients with COVID-19. Am J
            93.  Uversky VN, Redwan EM, Makis W, Rubio-Casillas A. IgG4
               antibodies induced by repeated vaccination may generate   Physiol Cell Physiol. 2021;320(1):C57-C65.
               immune tolerance to the SARS-CoV-2 spike protein.      doi: 10.1152/AJPCELL.00426.2020
               Vaccines (Basel). 2023;11(5):991.
                                                               104. Prasada Kabekkodu S, Chakrabarty S, Jayaram P, et al. Severe
               doi: 10.3390/vaccines11050991                      acute respiratory syndrome coronaviruses contributing to
                                                                  mitochondrial dysfunction: Implications for post-COVID
            94.  Trougakos IP, Terpos E, Alexopoulos H, et al. Adverse effects
               of COVID-19 mRNA vaccines: The spike hypothesis. Trends   complications. Mitochondrion. 2023;69:43-56.
               Mol Med. 2022;28(7):542-554.                       doi: 10.1016/j.mito.2023.01.005
               doi: 10.1016/j.molmed.2022.04.007               105. Zhang W, Wang G, Xu ZG,  et al. Lactate is a natural
                                                                  suppressor  of  RLR  signaling  by  targeting  MAVS.  Cell.
            95.  Guo CY, Sun L, Chen XP, Zhang DS. Oxidative stress,
               mitochondrial damage and neurodegenerative diseases.   2019;178(1):176-189.e15.
               Neural Regen Res. 2013;8(21):2003-2014.            doi: 10.1016/j.cell.2019.05.003


            Volume 3 Issue 4 (2024)                         23                               doi: 10.36922/an.4267
   91   92   93   94   95   96   97   98   99   100   101