Page 96 - AN-3-4
P. 96
Advanced Neurology SARS-CoV-2 in age-associated neurodegeneration
predicts severe COVID-19 in the UK biobank community doi: 10.3969/j.issn.1673-5374.2013.21.009
cohort. J Gerontol A Biol Sci Med Sci. 2020;75(11):2231-2232.
96. Silwal P, Kim JK, Kim YJ, Jo EK. Mitochondrial reactive
doi: 10.1093/gerona/glaa131 oxygen species: Double-edged weapon in host defense and
pathological inflammation during infection. Front Immunol.
85. Xia X, Wang Y, Zheng J. COVID-19 and Alzheimer’s disease:
How one crisis worsens the other. Transl Neurodegener. 2020;11:11649.
2021;10(1):15. doi: 10.3389/fimmu.2020.01649
doi: 10.1186/s40035-021-00237-2 97. Duan C, Ma R, Zeng X, et al. SARS-CoV-2 achieves immune
escape by destroying mitochondrial quality: Comprehensive
86. Ferini-Strambi L, Salsone M. COVID-19 and neurological
disorders: Are neurodegenerative or neuroimmunological analysis of the cellular landscapes of lung and blood
diseases more vulnerable? J Neurol. 2021;268(2):409-419. specimens from patients with COVID-19. Front Immunol.
2022;13:946731.
doi: 10.1007/s00415-020-10070-8
doi: 10.3389/fimmu.2022.946731
87. Monje M, Iwasaki A. The neurobiology of long COVID.
Neuron. 2022;110(21):3484-3496. 98. Wu J, Shi Y, Pan X, et al. SARS-CoV-2 ORF9b inhibits RIG-
I-MAVS antiviral signaling by interrupting K63-linked
doi: 10.1016/j.neuron.2022.10.006 ubiquitination of NEMO. Cell Rep. 2021;34(7):108761.
88. Schultheiß C, Willscher E, Paschold L, et al. The IL-1β, doi: 10.1016/j.celrep.2021.108761
IL-6, and TNF cytokine triad is associated with post-acute 99. Lin MM, Liu N, Qin ZH, Wang Y. Mitochondrial-
sequelae of COVID-19. Cell Rep Med. 2022;3(6):100663.
derived damage-associated molecular patterns amplify
doi: 10.1016/j.xcrm.2022.100663 neuroinflammation in neurodegenerative diseases. Acta
Pharmacol Sin. 2022;43(10):2439-2447.
89. Pszczołowska M, Walczak K, Misków W, et al. Molecular
cross-talk between long COVID-19 and Alzheimer’s disease. doi: 10.1038/s41401-022-00879-6
Geroscience. 2024;46(3):2885-2899.
100. Soscia SJ, Kirby JE, Washicosky KJ, et al. The Alzheimer’s
doi: 10.1007/s11357-024-01096-1 disease-associated amyloid β-protein is an antimicrobial
90. Yin K, Peluso MJ, Luo X, et al. Long COVID manifests with peptide. PLoS One. 2010;5(3):e9505.
T cell dysregulation, inflammation and an uncoordinated doi: 10.1371/journal.pone.0009505
adaptive immune response to SARS-CoV-2. Nat Immunol. 101. Ding Q, Shults NV, Gychka SG, Harris BT, Suzuki YJ. Protein
2024;25(2):218-225.
expression of angiotensin-converting enzyme 2 (ACE2) is
doi: 10.1038/s41590-023-01724-6 upregulated in brains with Alzheimer’s disease. Int J Mol Sci.
91. Klein J, Wood J, Jaycox JR, et al. Distinguishing features of 2021;22(4):1687.
long COVID identified through immune profiling. Nature. doi: 10.3390/ijms22041687
2023;623(7985):139-148.
102. Tian M, Liu W, Li X, et al. HIF-1α promotes SARS-CoV-2
doi: 10.1038/s41586-023-06651-y infection and aggravates inflammatory responses to
COVID-19. Signal Transduct Target Ther. 2021;6(1):308.
92. Ng CT, Sullivan BM, Teijaro JR, et al. Blockade of interferon
beta, but not interferon alpha, signaling controls persistent doi: 10.1038/s41392-021-00726-w
viral infection. Cell Host Microbe. 2015;17(5):653-661.
103. Ajaz S, McPhail MJ, Singh KK, et al. Mitochondrial
doi: 10.1016/j.chom.2015.04.005 metabolic manipulation by SARS-CoV-2 in peripheral
blood mononuclear cells of patients with COVID-19. Am J
93. Uversky VN, Redwan EM, Makis W, Rubio-Casillas A. IgG4
antibodies induced by repeated vaccination may generate Physiol Cell Physiol. 2021;320(1):C57-C65.
immune tolerance to the SARS-CoV-2 spike protein. doi: 10.1152/AJPCELL.00426.2020
Vaccines (Basel). 2023;11(5):991.
104. Prasada Kabekkodu S, Chakrabarty S, Jayaram P, et al. Severe
doi: 10.3390/vaccines11050991 acute respiratory syndrome coronaviruses contributing to
mitochondrial dysfunction: Implications for post-COVID
94. Trougakos IP, Terpos E, Alexopoulos H, et al. Adverse effects
of COVID-19 mRNA vaccines: The spike hypothesis. Trends complications. Mitochondrion. 2023;69:43-56.
Mol Med. 2022;28(7):542-554. doi: 10.1016/j.mito.2023.01.005
doi: 10.1016/j.molmed.2022.04.007 105. Zhang W, Wang G, Xu ZG, et al. Lactate is a natural
suppressor of RLR signaling by targeting MAVS. Cell.
95. Guo CY, Sun L, Chen XP, Zhang DS. Oxidative stress,
mitochondrial damage and neurodegenerative diseases. 2019;178(1):176-189.e15.
Neural Regen Res. 2013;8(21):2003-2014. doi: 10.1016/j.cell.2019.05.003
Volume 3 Issue 4 (2024) 23 doi: 10.36922/an.4267

