Page 97 - AN-3-4
P. 97

Advanced Neurology                                           SARS-CoV-2 in age-associated neurodegeneration



            106. Carpenè G, Onorato D, Nocini R,  et al. Blood lactate   disease. Front Neurosci. 2023;17:1268419.
               concentration in COVID-19: A systematic literature review.      doi: 10.3389/fnins.2023.1268419
               Clin Chem Lab Med. 2022;60(3):332-337.
                                                               118. Vuille-dit-Bille RN, Liechty KW, Verrey F, Guglielmetti LC.
               doi: 10.1515/cclm-2021-1115
                                                                  SARS-CoV-2 receptor ACE2 gene expression in
            107. Noonong K, Chatatikun M, Surinkaew S, et al. Mitochondrial   small intestine correlates with age.  Amino Acids.
               oxidative stress, mitochondrial ROS storms in long COVID   2020;52(6-7):1063-1065.
               pathogenesis. Front Immunol. 2023;14:1275001.
                                                                  doi: 10.1007/s00726-020-02870-z
               doi: 10.3389/fimmu.2023.1275001
                                                               119. Zhang Y, Yan R, Zhou Q. ACE2, B0AT1, and SARS-CoV-2
            108. Sindona C, Schepici G, Contestabile V, Bramanti P,   spike protein: Structural and functional implications. Curr
               Mazzon  E. NOX2 activation in Covid-19: Possible   Opin Struct Biol. 2022;74:102388.
               implications for neurodegenerative diseases.  Medicina
               (Lithuania). 2021;57(6):604.                       doi: 10.1016/j.sbi.2022.102388
               doi: 10.3390/medicina57060604                   120. Abu-Eid R, Ward FJ. Targeting the PI3K/Akt/mTOR
                                                                  pathway: A  therapeutic strategy in COVID-19  patients.
            109. Montezano AC, Camargo LL, Mary S, et al. SARS-CoV-2   Immunol Lett. 2021;240:1-8.
               spike  protein  induces  endothelial inflammation  via ACE2
               independently of viral replication. Sci Rep. 2023;13(1):14086.     doi: 10.1016/j.imlet.2021.09.005
               doi: 10.1038/s41598-023-41115-3                 121. Ghazanfar H, Kandhi S, Shin D, et al. Impact of COVID-19
                                                                  on the gastrointestinal tract: A  clinical review.  Cureus.
            110. Liochev SI.  Reactive oxygen  species  and  the free  radical   2022;14:e23333.
               theory of aging. Free Radic Biol Med. 2013;60:1-4.
                                                                  doi: 10.7759/cureus.23333
               doi: 10.1016/j.freeradbiomed.2013.02.011
                                                               122. Yamamoto S, Saito M, Tamura A, Prawisuda D, Mizutani T,
            111. Xue M, Feng L. The role of unfolded protein response in   Yotsuyanagi H. The human microbiome and COVID-19:
               coronavirus infection and its implications for drug design.   A systematic review. PLoS One. 2021;16(6):e0253293.
               Front Microbiol. 2021;12:808593.
                                                                  doi: 10.1371/journal.pone.0253293
               doi: 10.3389/fmicb.2021.808593
                                                               123. Huang X, Hussain B, Chang J. Peripheral inflammation and
            112. Wang X, Wang W, Wang T, et al. SARS-CoV-2 ORF8 protein   blood–brain  barrier  disruption:  Effects  and  mechanisms.
               induces  endoplasmic  reticulum  stress-like  responses  and
               facilitates virus replication by triggering calnexin: An   CNS Neurosci Ther. 2021;27(1):36-47.
               unbiased study. J Virol. 2023;97(3):e0001123.      doi: 10.1111/cns.13569
               doi: 10.1128/jvi.00011-23                       124. Sencio V, Machado MG, Trottein F. The lung-gut axis during
                                                                  viral respiratory infections: The impact of gut dysbiosis
            113. Kohli E, Causse S, Baverel V, et al. Endoplasmic reticulum
               chaperones in viral infection: Therapeutic perspectives.   on secondary disease outcomes.  Mucosal Immunol.
               Microbiol Mol Biol Rev. 2021;85:e0003521.          2021;14(2):296-304.
               doi: 10.1128/MMBR.00035-21                         doi: 10.1038/s41385-020-00361-8
            114. Wang M, Zhang Y, Li C, Chang W, Zhang L. The relationship   125. Rodrigues L, Cunha RB, Vassilevskaia T, Viveiros M,
               between gut microbiota and COVID-19 progression: New   Cunha C. Drug repurposing for COVID-19: A review and
               insights into immunopathogenesis and treatment.  Front   a novel strategy to identify new targets and potential drug
               Immunol. 2023;14:1180336.                          candidates. Molecules. 2022;27(9):2723.
               doi: 10.3389/fimmu.2023.1180336                    doi: 10.3390/molecules27092723
            115. Wong AC, Devason AS, Umana IC,  et al. Serotonin   126. Hashemian SMR, Pourhanifeh MH, Hamblin MR,
               reduction in post-acute sequelae of viral infection.  Cell.   Shahrzad MK, Mirzaei H. RdRp inhibitors and COVID-19:
               2023;186(22):4851-4867.e20.                        Is  molnupiravir  a good option?  Biomedicine and
                                                                  Pharmacotherapy. 2022;146:112517.
               doi: 10.1016/j.cell.2023.09.013
                                                                  doi: 10.1016/j.biopha.2021.112517
            116. Carabotti M, Scirocco A, Antonietta Maselli M, Severi C.
               The gut-brain axis: Interactions between enteric microbiota,   127. Malone B, Urakova N, Snijder EJ, Campbell EA. Structures
               central and enteric nervous systems.  Ann Gastroenterol.   and functions of coronavirus replication-transcription
               2015;28:203-209.                                   complexes and their relevance for SARS-CoV-2 drug design.
                                                                  Nat Rev Mol Cell Biol. 2022;23(1):21-39.
            117. Denman CR, Park SM, Jo J. Gut-brain axis: Gut dysbiosis
               and psychiatric disorders in Alzheimer’s and Parkinson’s      doi: 10.1038/s41580-021-00432-z


            Volume 3 Issue 4 (2024)                         24                               doi: 10.36922/an.4267
   92   93   94   95   96   97   98   99   100   101   102