Page 74 - AN-4-3
P. 74

Advanced Neurology                                                 Brain regions in olfactory dysfunction in PD



               doi: 10.3233/JAD-2010-1223                         doi: 10.1002/mds.21065
            23.  Moradi N, Shahidi S, Ahmadpanah M, Farashi S,   34.  Silveira-Moriyama L, Holton JL, Kingsbury A, et al. Regional
               Roshanaei G. Cortical and subcortical gray matter volume   differences in the severity of Lewy body pathology across the
               and cognitive impairment in Parkinson’s disease.  Appl   olfactory cortex. Neurosci Lett. 2009;453(2):77-80.
               Neuropsychol Adult. 2024; 31:1-14.
                                                                  doi: 10.1016/j.neulet.2009.02.006
               doi: 10.1080/23279095.2024.2443591
                                                               35.  Li Y, Xu J, Liu Y,  et al. A  distinct entorhinal cortex to
            24.  Taherkhani S, Moztarzadeh F, Seraj J,  et al. Iran smell   hippocampal CA1 direct circuit  for olfactory associative
               identification test (Iran-SIT): A  modified version of the   learning. Nat Neurosci. 2017;20(4):559-570.
               university of pennsylvania smell identification test (UPSIT)      doi: 10.1038/nn.4517
               for iranian population. Chem Percept. 2015;8(4):183-191.
                                                               36.  Bohnen NI, Gedela S, Herath P, Constantine GM, Moore
               doi: 10.1007/s12078-015-9192-9
                                                                  RY. Selective hyposmia in Parkinson disease: Association
            25.  Gaser C, Dahnke R, Thompson PM, Kurth F, Luders E,   with hippocampal dopamine activity.  Neurosci Lett.
               The Alzheimer’s Disease Neuroimaging Initiative. CAT:   2008;447(1):12-16.
               A  computational anatomy toolbox for the analysis of      doi: 10.1016/j.neulet.2008.09.070
               structural MRI data. Gigascience. 2024;13:giae049.
                                                               37.  Roh H, Kang J, Koh SB, Kim JH. Hippocampal volume is
               doi: 10.1093/gigascience/giae049
                                                                  related to olfactory impairment in Parkinson’s disease.
            26.  Ashburner J, Friston KJ. Unified segmentation. Neuroimage.   J Neuroimaging. 2021;31(6):1176-1183.
               2005;26(3):839-851.
                                                                  doi: 10.1111/jon.12911
               doi: 10.1016/j.neuroimage.2005.02.018
                                                               38.  Barrett MJ, Murphy JM, Zhang J, et al. Olfaction, cholinergic
            27.  Ashburner  J. A  fast  diffeomorphic  image registration   basal forebrain degeneration, and cognition in early
               algorithm. Neuroimage. 2007;38(1):95-113.          Parkinson disease. Parkinsonism Relat Disord. 2021;90:27-32.
               doi: 10.1016/j.neuroimage.2007.07.007              doi: 10.1016/j.parkreldis.2021.07.024
            28.  Lee S, Kim SS, Tae WS, et al. Regional volume analysis of   39.  Patel R, Stebbins G, Bernard B, Goldman J. Hippocampal
               the Parkinson disease brain in early disease stage: Gray   and entorhinal cortex atrophy across the Parkinson’s disease
               matter, white matter, striatum, and thalamus. AJNR Am J   cognitive impairment spectrum (S39.004).  Neurology.
               Neuroradiol. 2011;32(4):682-687.                   2017;88(16-Suppl):S39.
               doi: 10.3174/ajnr.A2372                            doi: 10.1212/WNL.88.16-supplement.S39.004
            29.  Halliday  GM.  Thalamic  changes  in  Parkinson’s  disease.   40.  Frisoni GB, Laakso MP, Beltramello A, et al. Hippocampal
               Parkinsonism Relat Dis. 2009;15:S152-S155.         and entorhinal cortex atrophy in frontotemporal dementia
                                                                  and Alzheimer’s disease. Neurology. 1999;52(1):91-91.
               doi: 10.1016/S1353-8020(09)70804-1
                                                                  doi: 10.1212/wnl.52.1.91
            30.  Xia J, Wang J, Tian W, et al. Magnetic resonance morphometry
               of the loss of gray matter volume in Parkinson’s disease   41.  Iizuka N,  Masaoka Y, Kubota S,  et  al. Entorhinal cortex
               patients. Neural Regen Res. 2013;8(27):2557-2565.  and parahippocampus volume reductions impact olfactory
                                                                  decline in aged subjects. Brain Behav. 2021;11(5):e02115.
               doi: 10.3969/j.issn.1673-5374.2013.27.007
                                                                  doi: 10.1002/brb3.2115
            31.  Gottfried JA, Zald DH. On the  scent of human olfactory
               orbitofrontal cortex: Meta-analysis and comparison to non-  42.  Kubota S, Masaoka Y, Sugiyama H,  et al. Hippocampus
               human primates. Brain Res Brain Res Rev. 2005;50(2):287-304.  and parahippocampus volume reduction associated with
                                                                  impaired olfactory abilities in subjects without evidence of
               doi: 10.1016/j.brainresrev.2005.08.004
                                                                  cognitive decline. Front Human Neurosci. 2020;14:556519.
            32.  Braak H, Del Tredici K, Rüb U, De Vos RA, Steur ENJ,
               Braak  E. Staging of brain pathology related to sporadic      doi: 10.3389/fnhum.2020.556519
               Parkinson’s disease. Neurobiol Aging. 2003;24(2):197-211.  43.  Bitzenhofer  SH, Westeinde EA, Zhang HXB, Isaacson  JS.
                                                                  Rapid odor processing by layer 2 subcircuits in lateral
               doi: 10.1016/s0197-4580(02)00065-9
                                                                  entorhinal cortex. Elife. 2022;11:e75065.
            33.  Braak H, Bohl JR, Müller CM, Rüb U, De Vos RA,
               Del Tredici K. Stanley fahn lecture 2005: The staging      doi: 10.7554/eLife.75065
               procedure for the inclusion body pathology associated with   44.  Sun  Y,  Jin  S,  Lin  X,  et al.  CA1-projecting  subiculum
               sporadic Parkinson’s disease reconsidered.  Move Disord.   neurons facilitate object-place learning.  Nat Neurosci.
               2006;21(12):2042-2051.                             2019;22(11):1857-1870.


            Volume 4 Issue 3 (2025)                         68                           doi: 10.36922/AN025110024
   69   70   71   72   73   74   75   76   77   78   79