Page 58 - ARNM-1-2
P. 58

Advances in Radiotherapy
            & Nuclear Medicine                                                    Image fusion’s significance in medicine



            Preparation and Characterization of Key Technologies and   7.   Zhou T, Ruan S, Canu S, 2019, A review: Deep learning for
            Equipment” for the Development of Key Technologies and   medical image segmentation using multi-modality fusion.
            Equipment in Major Science and Technology Infrastructure   Array, 3–4: 100004.
            in Shenzhen, China.                                   https://doi.org/10.1016/j.array.2019.100004
            Conflict of interest                               8.   Li S, Kang X, Fang L, et al., 2017, Pixel-level image fusion:
                                                                  A survey of the state of the art. Inform Fusion, 33: 100–112.
            The authors declare no conflicts of interest.
                                                                  https://doi.org/10.1016/j.inffus.2016.05.004
            Author contributions                               9.   Liu Z, Song Y, Sheng VS, et al., 2019, MRI and PET image
                                                                  fusion using the nonparametric density model and the
            Conceptualization: Xiangxing Kong, Hua Zhu            theory  of variable-weight. Comput Methods Programs
            Writing – original draft: Xiangxing Kong              Biomed, 175: 73–82.
            Writing – review & editing: Hua Zhu, Zhi Yang
                                                                  https://doi.org/10.1016/j.cmpb.2019.04.010
            Ethics approval and consent to participate         10.  Haddadpour M, Daneshvar S, Seyedarabi H, 2017, PET and

            Not applicable.                                       MRI image fusion based on combination of 2-D Hilbert
                                                                  transform and IHS method. Biomed J, 40: 219–225.
            Consent for publication                               https://doi.org/10.1016/j.bj.2017.05.002
            Not applicable.                                    11.  Stokking R, Zuiderveld KJ, Viergever MA, 2001, Integrated
                                                                  volume  visualization of  functional  image data and
            Availability of data                                  anatomical surfaces using normal fusion. Hum Brain Mapp,
            Not applicable.                                       12: 203–218.
                                                                  https://doi.org/10.1002/1097-0193(200104)12:4<203:AID-
            References                                            HBM1016>3.0.CO;2-X
            1.   Azam MA, Khan KB, Ahmad M, et al., 2021, Multimodal   12.  Chen CI, 2017, Fusion of PET and MR brain images
               medical image registration and fusion for quality   based on IHS and log-gabor transforms.  IEEE Sens J,
               enhancement. Comput Mater Continua, 68: 821–840.   17: 6995–7010.
               https://doi.org/10.32604/cmc.2021.016131           https://doi.org/10.1109/JSEN.2017.2747220
            2.   Bodar YJL, Jansen BHE, van der Voorn JP,  et al., 2021,   13.  Parmar K, Kher R, 2012, A Comparative Analysis of
               Detection of prostate cancer with 18F-DCFPyL PET/CT   Multimodality Medical Image Fusion Methods. In:
               compared to final histopathology of radical prostatectomy   Conference: 2012 Sixth Asia Modelling Symposium.
               specimens: is PSMA-targeted biopsy feasible? The DeTeCT
               trial. World J Urol, 39: 2439–2446.             14.  Liu Y, Yang J, Sun J, 2010, PET/CT Medical Image Fusion
                                                                  Algorithm  Based  on  Multiwavelet  Transform.  Vol.  2.  In:
               https://doi.org/10.1007/s00345-020-03490-8         Conference: Advanced Computer Control (ICACC),
                                                                       nd
            3.   Azam MA, Khan KB, Salahuddin S, et al., 2022, A review   2010 2  International Conference. p264–268.
               on multimodal medical image fusion: Compendious   15.  Haribabu M, Bindu CH, Prasad KS, 2012, Multimodal
               analysis of medical modalities, multimodal databases,   Medical Image Fusion of MRI-PET Using Wavelet
               fusion techniques and quality metrics.  Comput Biol  Med,   Transform. In: 2012 International Conference on Advances
               144: 105253.                                       in Mobile Network, Communication and its Applications.
               https://doi.org/10.1016/j.compbiomed.2022.105253  16.  Sahu  A,  Bhateja  V,  Krishn  A,  et al.,  2014,  Medical  image
            4.   Huang B, Yang F, Yin M, et al., 2020, A review of multimodal   fusion  with  Laplacian  Pyramids.  In: 2014  International
               medical image fusion techniques.  Comput  Math  Methods   Conference on Medical Imaging, m-Health and Emerging
               Med, 2020: 8279342.                                Communication Systems (MedCom).
               https://doi.org/10.1155/2020/8279342            17.  Mahmoudi FT, Samadzadegan F, Reinartz P, 2015, Object
                                                                  recognition based on the context aware decision-level fusion
            5.   James  AP,  Dasarathy  BV,  2014,  Medical  image  fusion:   in multiviews imagery. IEEE J Sel Top Appl Earth Obs Remote
               A survey of the state of the art. Inform Fusion, 19: 4–19.   Sens, 8: 12–22.
               https://doi.org/10.1016/j.inffus.2013.12.002       https://doi.org/10.1109/JSTARS.2014.2362103
            6.   LeCun Y, Bengio Y, Hinton G, 2015, Deep learning. Nature,   18.  Shabanzade F, Khateri M, Liu Z, 2019, MR and PET image
               521: 436–444.
                                                                  fusion using nonparametric bayesian joint dictionary
               https://doi.org/10.1038/nature14539                learning. IEEE Sens Lett, 3: 1–4.


            Volume 1 Issue 2 (2023)                         8                       https://doi.org/10.36922/arnm.0870
   53   54   55   56   57   58   59   60   61   62   63