Page 59 - ARNM-1-2
P. 59

Advances in Radiotherapy
            & Nuclear Medicine                                                    Image fusion’s significance in medicine



               https://doi.org/10.1109/LSENS.2019.2925072         https://doi.org/10.3390/s20082169
            19.  Zhang Q, Liu Y, Blum RS, et al., 2018, Sparse representation   31.  Liu Y, Chen X, Ward RK,  et al., 2016, Image fusion with
               based multi-sensor image fusion for multi-focus and multi-  convolutional sparse representation.  IEEE Signal Process
               modality images: A review. Inform Fusion, 40: 57–75.   Lett, 23: 1882–1886.
               https://doi.org/10.1016/j.inffus.2017.05.006       https://doi.org/10.1109/LSP.2016.2618776
            20.  Zong JJ, Qiu TS, 2017, Medical image fusion based on   32.  Liu S, Liu S, Cai W, et al., 2015, Multimodal neuroimaging
               sparse representation of classified image patches. Biomed Sig   feature learning for multiclass diagnosis of Alzheimer’s
               Process Control, 34: 195–205.                      disease. IEEE Trans Biomed Eng, 62: 1132–1140.
               https://doi.org/10.1016/j.bspc.2017.02.005         https://doi.org/10.1109/TBME.2014.2372011
            21.  Zhu Z, Yin H, Chai Y, et al., 2018, A novel multi-modality   33.  Zhang H, Yuan J, Tian X, et al., 2021, GAN-FM: Infrared
               image fusion method based on image decomposition and   and visible image fusion using GAN with full-scale skip
               sparse representation. Inform Sci, 432: 516–529.   connection and dual markovian discriminators. IEEE Trans
               https://doi.org/10.1016/j.ins.2017.09.010          Computat Imaging, 7: 1134–1147.
            22.  Daneshvar S, Ghassemian H, 2010, MRI and PET image      https://doi.org/10.1109/TCI.2021.3119954
               fusion by combining IHS and retina-inspired models.   34.  Ma J, Yu W, Liang P, et al., 2019, FusionGAN: A generative
               Inform Fusion, 11: 114–123.                        adversarial network for infrared and visible image fusion.
               https://doi.org/10.1016/j.inffus.2009.05.003       Inform Fusion, 48: 11–26.
            23.  Liu Z, Cao Y, Li Y, et al., 2020, Automatic diagnosis of      https://doi.org/10.1016/j.inffus.2018.09.004
               fungal keratitis using data augmentation and image fusion   35.  Huang J, Le Z, Ma Y, et al., 2020, MGMDcGAN: Medical
               with deep convolutional neural network. Comput Methods   image fusion using multi-generator multi-discriminator
               Programs Biomed, 187: 105019.                      conditional generative adversarial network.  IEEE Access,

               https://doi.org/10.1016/j.cmpb.2019.105019         8: 55145–55157.
            24.  Li Y, Zhao J, Lv Z,  et  al., 2021, Multimodal medical      https://doi.org/10.1109/ACCESS.2020.2982016
               supervised image fusion method by CNN. Front Neurosci,   36.  Lü X, Long L, Deng R, et al., 2022, Image feature extraction
               15: 638976.                                        based on fuzzy restricted Boltzmann machine. Measurement,
               https://doi.org/10.3389/fnins.2021.638976          204: 112063.
            25.  Dian R, Li S, Kang X, 2021, Regularizing hyperspectral and      https://doi.org/10.1016/j.measurement.2022.112063
               multispectral image fusion by CNN denoiser.  IEEE Trans   37.  Wu W, Qiu Z, Zhao M,  et al., 2018, Visible and infrared
               Neural Netw Learn Syst, 32: 1124–1135.             image fusion using NSST and deep  Boltzmann machine.
               https://doi.org/10.1109/TNNLS.2020.2980398         Optik, 157: 334–342.
            26.  Li J, Yuan G, Fan H, 2019, Multifocus image fusion using      https://doi.org/10.1016/j.ijleo.2017.11.087
               wavelet-domain-based deep CNN. Comput Intell Neurosci,   38.  Sakai Y, Yamanishi K, 2014, Data Fusion Using Restricted
               2019: 4179397.                                     Boltzmann Machines. In: 2014 IEEE International
               https://doi.org/10.1155/2019/4179397               Conference on Data Mining.
            27.  Liu M, Wang X, Zhang H, 2018, Taxonomy of multi-focal   39.  Fakhari A, Kiani K, 2021, A new restricted boltzmann
               nematode image stacks by a CNN based image fusion   machine  training  algorithm  for  image  restoration.
               approach. Comput Methods Programs Biomed, 156: 209–215.   Multimedia Tools Appl, 80: 2047–2062.
               https://doi.org/10.1016/j.cmpb.2018.01.016         https://doi.org/10.1007/s11042-020-09685-w
            28.  Lahoud F, Süsstrunk S, 2019, Zero-Learning Fast Medical   40.  Suk HI, Lee SW, Shen D, 2014, Hierarchical feature
               Image Fusion. In: 2019  22   International Conference on   representation and multimodal fusion with deep learning
                                   th
               Information Fusion (FUSION).                       for AD/MCI diagnosis. Neuroimage, 101: 569–582.
            29.  Teng J, Wang S, Zhang J,  et al., 2010, Neuro-Fuzzy      https://doi.org/10.1016/j.neuroimage.2014.06.077
               Logic Based Fusion Algorithm of Medical Images. In:   41.  He C, Liu Q, Li H, et al., 2010, Multimodal medical image
               2010  3   International Congress on Image and Signal   fusion based on IHS and PCA. Procedia Eng, 7: 280–285.
                     rd
               Processing.
                                                                  https://doi.org/10.1016/j.proeng.2010.11.045
            30.  Wang K, Zheng M, Wei H,  et al., 2020, Multi-modality
               medical image fusion using convolutional neural network   42.  Xiong  Y,  Wu  Y,  Wang  Y,  et al.,  2017,  A  Medical  Image
               and contrast pyramid. Sensors, 20, 2169.           Fusion Method Based on SIST and Adaptive PCNN. In:


            Volume 1 Issue 2 (2023)                         9                       https://doi.org/10.36922/arnm.0870
   54   55   56   57   58   59   60   61   62   63   64