Page 59 - ARNM-1-2
P. 59
Advances in Radiotherapy
& Nuclear Medicine Image fusion’s significance in medicine
https://doi.org/10.1109/LSENS.2019.2925072 https://doi.org/10.3390/s20082169
19. Zhang Q, Liu Y, Blum RS, et al., 2018, Sparse representation 31. Liu Y, Chen X, Ward RK, et al., 2016, Image fusion with
based multi-sensor image fusion for multi-focus and multi- convolutional sparse representation. IEEE Signal Process
modality images: A review. Inform Fusion, 40: 57–75. Lett, 23: 1882–1886.
https://doi.org/10.1016/j.inffus.2017.05.006 https://doi.org/10.1109/LSP.2016.2618776
20. Zong JJ, Qiu TS, 2017, Medical image fusion based on 32. Liu S, Liu S, Cai W, et al., 2015, Multimodal neuroimaging
sparse representation of classified image patches. Biomed Sig feature learning for multiclass diagnosis of Alzheimer’s
Process Control, 34: 195–205. disease. IEEE Trans Biomed Eng, 62: 1132–1140.
https://doi.org/10.1016/j.bspc.2017.02.005 https://doi.org/10.1109/TBME.2014.2372011
21. Zhu Z, Yin H, Chai Y, et al., 2018, A novel multi-modality 33. Zhang H, Yuan J, Tian X, et al., 2021, GAN-FM: Infrared
image fusion method based on image decomposition and and visible image fusion using GAN with full-scale skip
sparse representation. Inform Sci, 432: 516–529. connection and dual markovian discriminators. IEEE Trans
https://doi.org/10.1016/j.ins.2017.09.010 Computat Imaging, 7: 1134–1147.
22. Daneshvar S, Ghassemian H, 2010, MRI and PET image https://doi.org/10.1109/TCI.2021.3119954
fusion by combining IHS and retina-inspired models. 34. Ma J, Yu W, Liang P, et al., 2019, FusionGAN: A generative
Inform Fusion, 11: 114–123. adversarial network for infrared and visible image fusion.
https://doi.org/10.1016/j.inffus.2009.05.003 Inform Fusion, 48: 11–26.
23. Liu Z, Cao Y, Li Y, et al., 2020, Automatic diagnosis of https://doi.org/10.1016/j.inffus.2018.09.004
fungal keratitis using data augmentation and image fusion 35. Huang J, Le Z, Ma Y, et al., 2020, MGMDcGAN: Medical
with deep convolutional neural network. Comput Methods image fusion using multi-generator multi-discriminator
Programs Biomed, 187: 105019. conditional generative adversarial network. IEEE Access,
https://doi.org/10.1016/j.cmpb.2019.105019 8: 55145–55157.
24. Li Y, Zhao J, Lv Z, et al., 2021, Multimodal medical https://doi.org/10.1109/ACCESS.2020.2982016
supervised image fusion method by CNN. Front Neurosci, 36. Lü X, Long L, Deng R, et al., 2022, Image feature extraction
15: 638976. based on fuzzy restricted Boltzmann machine. Measurement,
https://doi.org/10.3389/fnins.2021.638976 204: 112063.
25. Dian R, Li S, Kang X, 2021, Regularizing hyperspectral and https://doi.org/10.1016/j.measurement.2022.112063
multispectral image fusion by CNN denoiser. IEEE Trans 37. Wu W, Qiu Z, Zhao M, et al., 2018, Visible and infrared
Neural Netw Learn Syst, 32: 1124–1135. image fusion using NSST and deep Boltzmann machine.
https://doi.org/10.1109/TNNLS.2020.2980398 Optik, 157: 334–342.
26. Li J, Yuan G, Fan H, 2019, Multifocus image fusion using https://doi.org/10.1016/j.ijleo.2017.11.087
wavelet-domain-based deep CNN. Comput Intell Neurosci, 38. Sakai Y, Yamanishi K, 2014, Data Fusion Using Restricted
2019: 4179397. Boltzmann Machines. In: 2014 IEEE International
https://doi.org/10.1155/2019/4179397 Conference on Data Mining.
27. Liu M, Wang X, Zhang H, 2018, Taxonomy of multi-focal 39. Fakhari A, Kiani K, 2021, A new restricted boltzmann
nematode image stacks by a CNN based image fusion machine training algorithm for image restoration.
approach. Comput Methods Programs Biomed, 156: 209–215. Multimedia Tools Appl, 80: 2047–2062.
https://doi.org/10.1016/j.cmpb.2018.01.016 https://doi.org/10.1007/s11042-020-09685-w
28. Lahoud F, Süsstrunk S, 2019, Zero-Learning Fast Medical 40. Suk HI, Lee SW, Shen D, 2014, Hierarchical feature
Image Fusion. In: 2019 22 International Conference on representation and multimodal fusion with deep learning
th
Information Fusion (FUSION). for AD/MCI diagnosis. Neuroimage, 101: 569–582.
29. Teng J, Wang S, Zhang J, et al., 2010, Neuro-Fuzzy https://doi.org/10.1016/j.neuroimage.2014.06.077
Logic Based Fusion Algorithm of Medical Images. In: 41. He C, Liu Q, Li H, et al., 2010, Multimodal medical image
2010 3 International Congress on Image and Signal fusion based on IHS and PCA. Procedia Eng, 7: 280–285.
rd
Processing.
https://doi.org/10.1016/j.proeng.2010.11.045
30. Wang K, Zheng M, Wei H, et al., 2020, Multi-modality
medical image fusion using convolutional neural network 42. Xiong Y, Wu Y, Wang Y, et al., 2017, A Medical Image
and contrast pyramid. Sensors, 20, 2169. Fusion Method Based on SIST and Adaptive PCNN. In:
Volume 1 Issue 2 (2023) 9 https://doi.org/10.36922/arnm.0870

