Page 107 - EER-2-1
P. 107

Explora: Environment
            and Resource                                                                    Artificial neural networks



            25.  Gasper P, Gering K, Dufek E, Smith K. Challenging      doi: 10.1149/1.3521314
               practices of algebraic battery life models through statistical   36.  Wu J, Wang Y, Zhang X, Chen Z. A novel state of health
               validation  and  model  identification  via  machine-learning.   estimation method of Li-ion battery using group method of
               J Electrochem Soc. 2021;168(2):020502.
                                                                  data handling. J Power Sources. 2016;327:457-464.
               doi: 10.1149/1945-7111/abdde1
                                                                  doi: 10.1016/j.jpowsour.2016.07.065
            26.  Gou B, Xu Y. An ensemble learning-based data-driven   37.  Li  X, Yuan C,  Wang  Z. Multi-time-scale  framework  for
               method for online state-of-health estimation of lithium-ion   prognostic health condition of lithium battery using
               batteries. IEEE Trans Transp Electrif. 2021;7(2):422-436.
                                                                  modified Gaussian process regression and nonlinear
               doi: 10.1109/TTE.2020.3029295                      regression. J Power Sources. 2020;467:228358.
            27.  Yang R, Xiong R, Ma S, Lin X. Characterization of external      doi: 10.1016/j.jpowsour.2020.228358
               short circuit faults in electric vehicle Li-ion battery packs   38.  Type  C.  Sony VTC6 Battery Technical Information; 2015.
               and prediction using artificial neural networks. Appl Energy.   Available from: https://www.kronium.cz/uploads/SONY_
               2020;260:114253.
                                                                  US18650VTC6.pdf [Last accessed on 2025 Feb 27].
               doi: 10.1016/j.apenergy.2019.114253
                                                               39.  Roberts C, Petrovich S, Ebrahimi K. Battery modeling for
            28.  Hosen MS, Jaguemont J, Van Mierlo J, Berecibar M. Battery   emulators in vehicle test cell. Batteries. 2024;10(6):199.
               lifetime prediction and performance assessment of different      doi: 10.3390/batteries10060199
               modeling approaches. iScience. 2021;24(2):102060.
                                                               40.  Sungur B. State of charge estimation for lithium-ion
               doi: 10.1016/j.isci.2021.102060
                                                                  batteries using optimized model based on optimal HPPC
            29.  Rouholamini M, Wang C, Nehrir H,  et al.  A  review of   conditions created using taguchi method and multi-
               modeling, management, and applications of grid-connected   objective optimization. Appl Sci. 2024;14:9245.
               li-ion battery storage systems.  IEEE  Trans Smart Grid.   41.  Baccouche I, Jemmali S, Manai B, Omar N, Essoukri Ben
               2022;13(6):4505-4524.
                                                                  Amara N. Improved OCV model of a Li-ion NMC battery
               doi: 10.1109/TSG.2022.3188598                      for online SOC estimation using the extended Kalman filter.
                                                                  Energies. 2017;10(6):1-22.
            30.  Okwu MO, Tartibu LK. Metaheuristic Optimization: Nature-
               Inspired Algorithms Swarm and Computational Intelligence,      doi: 10.3390/en10060764
               Theory and Applications. Vol.  927; 2021.  Available  from:   42.  Zhang C,  Jiang  J, Zhang L,  Liu  S, Wang  L, Loh  PC.
               https://link.springer.com/10.1007/978-3-030-61111-8 [Last   A  generalized  SOC-OCV  model for  lithium-ion batteries
               accessed on 2025 Feb 27].
                                                                  and the SOC estimation for LNMCO battery.  Energies.
            31.  Gan N, Sun Z, Zhang Z, Xu S, Liu P, Qin Z. Data-driven fault   2016;9(11):900.
               diagnosis of lithium-ion battery overdischarge in electric      doi: 10.3390/en9110900
               vehicles. IEEE Trans Power Electron. 2022;37(4):4575-4588.
                                                               43.  Qin Y, Du J, Lu L, et al. A rapid lithium-ion battery heating
               doi: 10.1109/TPEL.2021.3121701
                                                                  method based on bidirectional pulsed current: Heating effect
            32.  Severson KA, Attia PM, Jin N, et al. Data-driven prediction   and impact on battery life. Appl Energy. 2020;280:115957.
               of battery cycle life before capacity degradation. Nat Energy.      doi: 10.1016/j.apenergy.2020.115957
               2019;4:383-391.
                                                               44.  Akbarzadeh M, Kalogiannis T, Jaguemont J, et al. Thermal
               doi: 10.1038/s41560-019-0356-8
                                                                  modeling of a high-energy prismatic lithium-ion battery
            33.  Attia PM, Grover A, Jin N, et al. Closed-loop optimization of   cell and module based on a new thermal characterization
               fast-charging protocols for batteries with machine learning.   methodology. J Energy Storage. 2020;32:101707.
               Nature. 2020;578(7795):397-402.
                                                                  doi: 10.1016/j.est.2020.101707
               doi: 10.1038/s41586-020-1994-5
                                                               45.  Jaguemont J, Nikolian A, Omar N, Goutam S, Van Mierlo J,
            34.  Dai H, Zhao G, Lin M, Wu J, Zheng G. A novel estimation   Van Den Bossche P. Development of a two-dimensional-
               method for the state of health of lithium-ion battery using   thermal model of three battery chemistries.  IEEE Trans
               prior knowledge-based neural network and markov chain.   Energy Convers. 2017;32(4):1447-1455.
               IEEE Trans Ind Electron. 2019;66(10):7706-7716.
                                                                  doi: 10.1109/TEC.2017.2697944
               doi: 10.1109/TIE.2018.2880703
                                                               46.  FreedomCAR. FreedomCAR Battery Test Manual For Power-
            35.  Guo  M,  Sikha  G,  White  RE.  Single-particle  model  for  a   Assist Hybrid Electric Vehicles Disclaimer; 2003. Available from:
               lithium-ion cell: Thermal behavior.  J  Electrochem Soc.   https://avt.inl.gov/sites/default/files/pdf/battery/freedomcar_
               2011;158(2):A122.                                  manual_04_15_03.pdf [Last accessed on 2025 Feb 27].


            Volume 2 Issue 1 (2025)                         14                               doi: 10.36922/eer.7228
   102   103   104   105   106   107   108   109   110   111   112