Page 107 - EER-2-1
P. 107
Explora: Environment
and Resource Artificial neural networks
25. Gasper P, Gering K, Dufek E, Smith K. Challenging doi: 10.1149/1.3521314
practices of algebraic battery life models through statistical 36. Wu J, Wang Y, Zhang X, Chen Z. A novel state of health
validation and model identification via machine-learning. estimation method of Li-ion battery using group method of
J Electrochem Soc. 2021;168(2):020502.
data handling. J Power Sources. 2016;327:457-464.
doi: 10.1149/1945-7111/abdde1
doi: 10.1016/j.jpowsour.2016.07.065
26. Gou B, Xu Y. An ensemble learning-based data-driven 37. Li X, Yuan C, Wang Z. Multi-time-scale framework for
method for online state-of-health estimation of lithium-ion prognostic health condition of lithium battery using
batteries. IEEE Trans Transp Electrif. 2021;7(2):422-436.
modified Gaussian process regression and nonlinear
doi: 10.1109/TTE.2020.3029295 regression. J Power Sources. 2020;467:228358.
27. Yang R, Xiong R, Ma S, Lin X. Characterization of external doi: 10.1016/j.jpowsour.2020.228358
short circuit faults in electric vehicle Li-ion battery packs 38. Type C. Sony VTC6 Battery Technical Information; 2015.
and prediction using artificial neural networks. Appl Energy. Available from: https://www.kronium.cz/uploads/SONY_
2020;260:114253.
US18650VTC6.pdf [Last accessed on 2025 Feb 27].
doi: 10.1016/j.apenergy.2019.114253
39. Roberts C, Petrovich S, Ebrahimi K. Battery modeling for
28. Hosen MS, Jaguemont J, Van Mierlo J, Berecibar M. Battery emulators in vehicle test cell. Batteries. 2024;10(6):199.
lifetime prediction and performance assessment of different doi: 10.3390/batteries10060199
modeling approaches. iScience. 2021;24(2):102060.
40. Sungur B. State of charge estimation for lithium-ion
doi: 10.1016/j.isci.2021.102060
batteries using optimized model based on optimal HPPC
29. Rouholamini M, Wang C, Nehrir H, et al. A review of conditions created using taguchi method and multi-
modeling, management, and applications of grid-connected objective optimization. Appl Sci. 2024;14:9245.
li-ion battery storage systems. IEEE Trans Smart Grid. 41. Baccouche I, Jemmali S, Manai B, Omar N, Essoukri Ben
2022;13(6):4505-4524.
Amara N. Improved OCV model of a Li-ion NMC battery
doi: 10.1109/TSG.2022.3188598 for online SOC estimation using the extended Kalman filter.
Energies. 2017;10(6):1-22.
30. Okwu MO, Tartibu LK. Metaheuristic Optimization: Nature-
Inspired Algorithms Swarm and Computational Intelligence, doi: 10.3390/en10060764
Theory and Applications. Vol. 927; 2021. Available from: 42. Zhang C, Jiang J, Zhang L, Liu S, Wang L, Loh PC.
https://link.springer.com/10.1007/978-3-030-61111-8 [Last A generalized SOC-OCV model for lithium-ion batteries
accessed on 2025 Feb 27].
and the SOC estimation for LNMCO battery. Energies.
31. Gan N, Sun Z, Zhang Z, Xu S, Liu P, Qin Z. Data-driven fault 2016;9(11):900.
diagnosis of lithium-ion battery overdischarge in electric doi: 10.3390/en9110900
vehicles. IEEE Trans Power Electron. 2022;37(4):4575-4588.
43. Qin Y, Du J, Lu L, et al. A rapid lithium-ion battery heating
doi: 10.1109/TPEL.2021.3121701
method based on bidirectional pulsed current: Heating effect
32. Severson KA, Attia PM, Jin N, et al. Data-driven prediction and impact on battery life. Appl Energy. 2020;280:115957.
of battery cycle life before capacity degradation. Nat Energy. doi: 10.1016/j.apenergy.2020.115957
2019;4:383-391.
44. Akbarzadeh M, Kalogiannis T, Jaguemont J, et al. Thermal
doi: 10.1038/s41560-019-0356-8
modeling of a high-energy prismatic lithium-ion battery
33. Attia PM, Grover A, Jin N, et al. Closed-loop optimization of cell and module based on a new thermal characterization
fast-charging protocols for batteries with machine learning. methodology. J Energy Storage. 2020;32:101707.
Nature. 2020;578(7795):397-402.
doi: 10.1016/j.est.2020.101707
doi: 10.1038/s41586-020-1994-5
45. Jaguemont J, Nikolian A, Omar N, Goutam S, Van Mierlo J,
34. Dai H, Zhao G, Lin M, Wu J, Zheng G. A novel estimation Van Den Bossche P. Development of a two-dimensional-
method for the state of health of lithium-ion battery using thermal model of three battery chemistries. IEEE Trans
prior knowledge-based neural network and markov chain. Energy Convers. 2017;32(4):1447-1455.
IEEE Trans Ind Electron. 2019;66(10):7706-7716.
doi: 10.1109/TEC.2017.2697944
doi: 10.1109/TIE.2018.2880703
46. FreedomCAR. FreedomCAR Battery Test Manual For Power-
35. Guo M, Sikha G, White RE. Single-particle model for a Assist Hybrid Electric Vehicles Disclaimer; 2003. Available from:
lithium-ion cell: Thermal behavior. J Electrochem Soc. https://avt.inl.gov/sites/default/files/pdf/battery/freedomcar_
2011;158(2):A122. manual_04_15_03.pdf [Last accessed on 2025 Feb 27].
Volume 2 Issue 1 (2025) 14 doi: 10.36922/eer.7228

