Page 108 - EER-2-1
P. 108
Explora: Environment
and Resource Artificial neural networks
47. Ruiz V. Standards for the Performance and Durability for lithium-ion batteries. J Power Sources. 2002;109(1):160-166.
Assessment of Electric Vehicle Batteries-Possible Performance doi: 10.1016/S0378-7753(02)00048-4
Criteria for an Ecodesign Regulation. Eng Mater Sci. 2018;68.
55. De Hoog J, Jaguemont J, Abdel-Monem M, Van Den Bossche P,
48. Abolhassani Monfared N, Gharib N, Moqtaderi H, et al. Van Mierlo J, Omar N. Combining an electrothermal and
Prediction of state-of-charge effects on lead-acid battery impedance aging model to investigate thermal degradation
characteristics using neural network parameter modifier. caused by fast charging. Energies. 2018;11(4):804.
J Power Sources. 2006;158(2 Specail issue):932-935.
doi: 10.3390/en11040804
doi: 10.1016/j.jpowsour.2005.11.023
56. Marotta A, Tutuianu M. Europe-Centric Light Duty Test Cycle
49. Nikolian A, Jaguemont J, de Hoog J, et al. Complete cell- and Differences with Respect to the WLTP Cycle. Vol. 7-10.
level lithium-ion electrical ECM model for different Luxembourg: Institute for Energy and Transport; 2012.
chemistries (NMC, LFP, LTO) and temperatures (−5 °C to
45 °C)-Optimized modelling techniques. Int J Electr Power doi: 10.2790/53651
Energy Syst. 2018;98:133-146. 57. de Hoog J, Timmermans JM, Ioan-Stroe D, et al. Combined
doi: 10.1016/j.ijepes.2017.11.031 cycling and calendar capacity fade modeling of a Nickel-
Manganese-Cobalt Oxide Cell with real-life profile
50. He H, Xiong R, Fan J. Evaluation of lithium-ion battery validation. Appl Energy. 2017;200:47-61.
equivalent circuit models for state of charge estimation by
an experimental approach. Energies. 2011;4(4):582-598. doi: 10.1016/j.apenergy.2017.05.018
doi: 10.3390/en4040582 58. Tu H, Moura S, Wang Y, Fang H. Integrating physics-based
modeling with machine learning for lithium-ion batteries.
51. Jaguemont J, Darwiche A, Barde F. Optimal fast-charging Appl Energy. 2023;329:1-25.
strategy for cylindrical li-ion cells at different temperatures.
World Electr Veh J. 2024;15(8):330. doi: 10.1016/j.apenergy.2022.120289
59. Pour MY. Electro-Thermal Modeling of Lithium-Ion Batteries.
doi: 10.3390/wevj15080330
2015. Available from: https://www.sfu.ca/~mbahrami/pdf/
52. Jaguemont J, Darwiche A, Bardé F. Optimal fast-charging Theses/Thesis - M. Yazdan Pour - Electro-thermal Modeling
strategy for cylindrical li-ion cells. Highlights Veh. 2024;2:24-34. of Lithium-ion Battery.pdf [Last accessed on 2025 Feb 27].
53. White G, Hales A. Novel methods for measuring the thermal 60. Zhang L, Peng H, Ning Z, Mu Z, Sun C. Comparative
diffusivity and the thermal conductivity of a lithium-ion research on RC equivalent circuit models for lithium-ion
battery. Appl Therm Eng. 2022;212:118573. batteries of electric vehicles. Appl Sci. 2017;7(10):1002.
54. Wu MS, Liu KH, Wang YY, Wan CC. Heat dissipation design doi: 10.3390/app7101002
Volume 2 Issue 1 (2025) 15 doi: 10.36922/eer.7228

