Page 30 - ESAM-1-2
P. 30

Engineering Science in
            Additive Manufacturing                                             AM-CFRP structures for EMWA properties



               metastructure for broadband microwave absorption and   80.  Gong P, Hao L, Li Y, Li Z, Xiong W. 3D-printed carbon fiber/
               load bearing. Mater Res Bull. 2023;166:112368.     polyamide-based flexible honeycomb structural absorber
                                                                  for multifunctional broadband microwave absorption.
               doi: 10.1016/j.materresbull.2023.112368
                                                                  Carbon. 2021;185:272-281.
            70.  Deng K, Wu H, Song B, et al. 3D-printed conical structure
               absorber based on NFG/Fe3Si/SiCnw ternary composites      doi: 10.1016/j.carbon.2021.09.014
               for multifunctional integrated electromagnetic microwave   81.  Yang Z, Liang Q, Duan Y, Li Z, Li D, Cao Y. A 3D-printed
               absorption. Compos B Eng. 2024;274:111243.         lightweight  broadband  electromagnetic  absorbing
                                                                  metastructure with preserved high-temperature mechanical
               doi: 10.1016/j.compositesb.2024.111243
                                                                  property. Compos Struct. 2021;274:114330.
            71.  Duan Y, Liang Q, Yang Z, Wang X, Liu P, Li D. Ultrabroadband
               metastructure absorber with angular stability for conformal      doi: 10.1016/j.compstruct.2021.114330
               applications. Mater Today Phys. 2023;39:101278.  82.  Jiang W, Yan L, Ma H,  et al. Electromagnetic wave
                                                                  absorption and compressive behavior of a three-dimensional
               doi: 10.1016/j.mtphys.2023.101278
                                                                  metamaterial absorber based on 3D printed honeycomb. Sci
            72.  Zhang T, Li D, Yang Z, et al. A multi-materials 3D-printed   Rep. 2018;8(1):4817.
               continuous  conductive  fibre-based  metamaterial     doi: 10.1038/s41598-018-23286-6
               for broadband microwave absorption.  Virtual Phys
               Prototyp. 2024;19(1):e2285417.                  83.  Dong H, Gao S, Yu C, et al. Enhancing microwave absorption
                                                                  of bio-inspired structure  through  3D printed concentric
               doi: 10.1080/17452759.2023.2285417
                                                                  infill pattern. Compos B Eng. 2025;289:111924.
            73.  Yin X, Long C, Li J, et al. Ultra-wideband microwave      doi: 10.1016/j.compositesb.2024.111924
               absorber by connecting multiple absorption bands of two
               different-sized hyperbolic metamaterial waveguide  arrays.   84.  Ren  J, Yin  JY. 3D-printed low-cost dielectric-resonator-
               Sci Rep. 2015;5(1):15367.                          based ultra-broadband microwave absorber using carbon-
                                                                  loaded acrylonitrile butadiene styrene polymer.  Materials
               doi: 10.1038/srep15367
                                                                  (Basel). 2018;11(7):1249.
            74.  Lim DD, Ibarra A, Lee J, Jung J, Choi W, Gu GX. A tunable      doi: 10.3390/ma11071249
               metamaterial microwave absorber inspired by chameleon’s
               color-changing mechanism. Sci Adv. 2025;11(3):eads3499.  85.  An Q, Li D, Liao W,  et al. Electromagnetic absorption
                                                                  mechanism of TPMS‐based metastructures: Synergy
               doi: 10.1126/sciadv.ads3499
                                                                  between materials and structures.  Adv Funct Mater.
            75.  Li D, Pan W, Wang T, Wang X, Gong R. 3D printed   2025;35(5):2414629.
               lightweight metastructure with microwave absorption and
               mechanical resistance. Mater Des. 2023;225:111506.     doi: 10.1002/adfm.202414629
                                                               86.  Li D, Zheng X, Gu H,  et al. Gradient honeycomb
               doi: 10.1016/j.matdes.2022.111506
                                                                  metastructure  with broadband  microwave absorption
            76.  Zhang S, An Q, Li D, et al. Multifunctional meta-absorber   and effective mechanical resistance.  Nano Mater Sci.
               based on CB-PLA composite and magnetic materials for   2024;6(4):456-466.
               electromagnetic absorption and load-bearing capacity.      doi: 10.1016/j.nanoms.2023.09.005
               Compos Sci Technol. 2025;264:111131.
                                                               87.  Liu Z, Zhang R, Wang S, Zhao W, Yu G, Wu L. Design and
               doi: 10.1016/j.compscitech.2025.111131
                                                                  fabrication of an all-composite ultra-broadband absorbing
            77.  Tan R, Zhou F, Liu Y,  et al. 3D printed propeller-like   structure with superior load-bearing capacity. Compos Sci
               metamaterial for wide-angle and broadband microwave   Technol. 2023;240:110094.
               absorption. J Mater Sci Technol. 2023;144:45-53.
                                                                  doi: 10.1016/j.compscitech.2023.110094
               doi: 10.1016/j.jmst.2022.10.012
                                                               88.  Qin H, Ding S, Ashour A, Zheng Q, Han B. Revolutionizing
            78.  Lu Y, Chi B, Liu D, et al. Wideband metamaterial absorbers   infrastructure: The evolving landscape of electricity-based
               based on conductive plastic with additive manufacturing   multifunctional concrete from concept to practice.  Prog
               technology. ACS Omega. 2018;3(9):11144-11150.      Mater Sci. 2024:101310.
               doi: 10.1021/acsomega.8b01223                      doi: 10.1016/j.pmatsci.2024.101310
            79.  Sun H, Zhang Y, Wu Y, et al. Broadband and high-efficiency   89.  Rithika K, Sudha J. Additive manufacturing of fiber‐
               microwave absorbers based on pyramid structure. ACS Appl   reinforced composites-a comprehensive overview.  Polym
               Mater Interfaces. 2022;14(46):52182-52192.         Adv Technol. 2024;35(12):e70002.
               doi: 10.1021/acsami.2c16166                        doi: 10.1002/pat.70002


             Volume 1 Issue 2 (2025)                        24                         doi: 10.36922/ESAM025160008
   25   26   27   28   29   30   31   32   33   34   35