Page 68 - ESAM-1-2
P. 68

Engineering Science in
            Additive Manufacturing                                          Multi-material additive manufacturing of metals



            40.  Wei C, Li L. Recent progress and scientific challenges in   additive- manufacturing of tungsten - copper alloy bimetallic
               multi-material additive manufacturing via laser-  based   structure with a  stainless-steel interlayer and  associated
               powder bed fusion. Virt Phys Prototyp. 2021;16(3):347-371.  bonding mechanisms. Addit Manuf. 2022;50:102574.
            41.  Wu Z, Wilson-Heid AE, Joey Griffiths R, Elton ES. A review   55.  Wei C, Sun Z, Huang Y, Li L. Embedding anti-counterfeiting
               on experimentally observed mechanical and microstructural   features in metallic components via multiple material
               characteristics of interfaces in multi-material laser powder   additive manufacturing. Addit Manuf. 2018;24:1-12.
               bed fusion. Front Mech Eng. 2023;9:1087021.
                                                               56.  Liu L, Wang D, Deng G,  et  al. Interfacial characteristics
            42.  Sun Z, Ion JC. Laser welding of dissimilar metal   and formation mechanisms of copper-steel multimaterial
               combinations. J Mater Sci. 1995;30(17):4205-4214.  structures fabricated via laser powder bed fusion using
            43.  Mai TA, Spowage AC. Characterisation of dissimilar joints   different building strategies. Chin J Mech Eng Addit Manuf
               in laser welding of steel-kovar, copper-steel and copper-  Front. 2022;1(3):100045.
               aluminium. Mater Sci Eng A. 2004;374(1-2):224-233.  57.  Wei C, Liu L, Cao H, et al. Cu10Sn to Ti6Al4V bonding
            44.  Estrin Y, Beygelzimer Y, Kulagin R,  et al. Architecturing   mechanisms in laser-based  powder  bed fusion multiple
               materials at mesoscale: Some current trends. Mater Res Lett.   material additive manufacturing with different build
               2021;9(10):399-421.                                strategies. Addit Manuf. 2022;51:102588.
            45.  Gradl PR, Protz C, Fikes J, et al. Lightweight thrust chamber   58.  Chen J, Yang Y, Song C, Zhang M, Wu S, Wang D. Interfacial
               assemblies using multi-alloy additive manufacturing and   microstructure and mechanical properties of 316L/CuSn10
               composite overwrap. In: AIAA Propulsion and Energy 2020   multi-material bimetallic structure fabricated by selective
               Forum, VIRTUAL EVENT. USA: American Institute of   laser melting. Mater Sci Eng A. 2019;752:75-85.
               Aeronautics and Astronautics; 2020.             59.  Schneck M, Horn M, Schmitt M, Seidel C, Schlick G,
            46.  Gradl PR, Protz CS, Ellis DL, Greene SE. Progress in   Reinhart G. Review on additive hybrid-and multi-material-
               Additively  Manufactured  Copper-Alloy  GRCop-84,  manufacturing of metals by powder bed fusion: State of
               GRCop-42, and bimetallic combustion chambers for liquid   technology and development potential. Prog Addit Manuf.
               rocket engines. In: International Astronautical Congress.  2021;6(4):881-894.
            47.  Marques  A,  Cunha  A,  Gasik  M,  Carvalho  O,  Silva  FS,   60.  Ansari M, Jabari E, Toyserkani E. Opportunities and
               Bartolomeu F. Inconel 718–copper parts fabricated by   challenges in additive manufacturing of functionally
               3D multi-material laser powder bed fusion: A  novel   graded metallic materials via powder-fed laser directed
               technological and designing approach for rocket engine. Int   energy deposition: A  review.  J  Mater Process Technol.
               J Adv Manuf Technol. 2022;122(3):2113-2123.        2021;294:117117.
            48.  Bhaduri D, Penchev P, Essa K, et al. Evaluation of surface/  61.  Bhavar V, Kattire P, Thakare S, Patil S, Singh R. A review
               interface quality, microstructure and mechanical properties   on functionally gradient materials (FGMs) and their
               of hybrid additive- subtractive aluminium parts. CIRP Ann.   applications. IOP Conf Ser Mater Sci Eng. 2017;229:012021.
               2019;68(1):237-240.
                                                               62.  Mahmoud D, Elbestawi M. Lattice structures and
            49.  Wits WW, Amsterdam E. Graded structures by multi-  functionally graded materials applications in additive
               material mixing in laser powder bed fusion.  CIRP Ann.   manufacturing of orthopedic implants: A review. J Manuf
               2021;70(1):159-162.                                Mater Process. 2017;1(2):13.
            50.  Nguyen  DS, Park HS,  Lee  CM.  Applying  selective  laser   63.  Ren L, Wang Z, Ren L, Han Z, Liu Q, Song Z. Graded
               melting to join Al and Fe: An investigation of dissimilar   biological  materials  and  additive  manufacturing
               materials. Appl Sci. 2019;9(15):3031.              technologies for producing bioinspired graded materials:
            51.  Andreiev A, Hoyer KP, Dula D, et al. Laser beam melting   An overview. Compos Part B Eng. 2022;242:110086.
               of functionally graded materials with application-adapted   64.  Saleh B, Jiang J, Fathi R,  et al. 30 Years of functionally
               tailoring of magnetic and mechanical performance. Mater   graded materials: An overview of manufacturing methods,
               Sci Eng A. 2021;822:141662.                        Applications and Future Challenges.  Compos Part  B Eng.
            52.  Bartolomeu F, Costa MM, Alves N, Miranda G, Silva FS.   2020;201:108376.
               Additive manufacturing of NiTi-Ti6Al4V multi-  material   65.  Xu F, Zhang X, Zhang H. A review on functionally graded
               cellular structures targeting orthopedic implants.  Optics   structures and materials for energy absorption. Eng Struct.
               Lasers Eng. 2020;134:106208.                       2018;171:309-325.
            53.  Tan C, Zhou K, Kuang T. Selective laser melting of   66.  Wei C, Zhang Z, Cheng D, Sun Z, Zhu M, Li L. An
               tungsten-copper functionally graded material.  Mater Lett.   overview of laser-based multiple metallic material additive
               2019;237:328-331.
                                                                  manufacturing: From macro- to micro-scales. Int J Extreme
            54.  Wei C, Liu L, Gu Y,  et al. Multi-material       Manuf. 2021;3(1):012003.


            Volume 1 Issue 2 (2025)                         36                         doi: 10.36922/ESAM025180010
   63   64   65   66   67   68   69   70   71   72   73